ضریب توزیع عناصر نادر خاکی، ایتریم، توریم، اورانیم، نیوبیم و تانتالیم زیرکن/ سنگ در گرانیتوئیدهای سرنوسر، سرخر و برمانی: کاربرد در تعیین منشأ ماگما و اکتشافات معدنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

2 استاد، گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

3 استاد، گروه محیط زیست و تنوع زیستی، دانشکده زمین‌شناسی، دانشگاه سالزبورگ، اتریش

چکیده

در این پژوهش، برای کمک به درک زمین‌شیمی عناصر کمیاب  زیرکن محتوای عناصر خاکی کمیاب، ایتریم، توریم، اورانیم، نیوبیم و تانتالیم در بلورهای زیرکن دو توده گرانیتوئیدی سرنوسر و سرخر و برمانی در ناحیه معدنی سنگان با استفاده از فناوری طیف سنجی جرمی پلاسمای جفتیده القایی فرساب لیزری با هدف تعیین منشأ و بارور بودن ماگماتیسم منطقه مورد بررسی قرار‌گرفته است. با استفاده از ضریب توزیع زیرکن/ سنگ کل عناصر نادر خاکی، ایتریم، توریم، اورانیم، نیوبیم و تانتالیم مشخص‌شد که الگوهای عناصر کمیاب در بلورهای زیرکن گرانیتوئیدهای سرنوسر وسرخر و برمانی در لحظه تبلور توسط ترکیب مذاب کنترل می‌شوند. ماگماتیسم سرنوسر نسبت به ماگماتیسم سرخر و برمانی دارای دمای تشکیل بالاتر (736 تا 915 درجه سانتی‌گراد)، ضریب توزیع زیرکن/ سنگ عناصر نادر خاکی، ایتریم و توریم بیشتر بوده (تا مقادیر 2770 برای عنصر زیرکنیم) و در شرایط اکسیدان بالاتری (△FMQ در محدوده بین 06/0- تا 01/17) تشکیل‌شده است. نتایج این بررسی نشان‌داد که ماگماهای اکسید شده و نوع I در محیط­های زمین‌ساختی مرتبط با فرورانش برای کانی‌سازی پورفیری و اسکارن مطلوب­ تر هستند.

کلیدواژه‌ها


Ballard, J.R., Palin, M.J. and Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contribution to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5
Barbey, P., Allé, P., Brouand, M. and Albarède, F., 1995. Rare-earth patterns in zircon from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of crustally-derived granite magma. Chemical Geology, 125(1–2): 1–17. https://doi.org/10.1016/0009-2541(95)00068-W
Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. https://doi.org/10.1007/s004100050159
Belousova, E.A., Grifffin, W.L., O'Reilly, S.Y. and Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator on source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
Blundy, J.D. and Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505): 452–454. https://doi.org/10.1038/372452a0
Boomeri, M., 1998. Petrography and geochemistry of the Sangan iron skarn deposit and related igneous rocks, northeastern Iran. Unpublished Ph.D. Thesis, Akita University, Akita, Japan, 226 pp.
Boomeri, M., Mizuta, T., Ishiyama, D. and Nakashima, K., 2006. Fluorine and chlorine in biotite from the Sarnwosar granitic rocks, Northeastern Iran. Iranian Journal of Science and Technology Transaction A-Science, 30, 111–125. Retrieved February 1, 2023 from https://www.sid.ir/paper/117921/en
Boomeri, M., Mizuta, T., Nakashima, K., Ishiyama, D. and Ishikawa, Y., 1997. Geochemical characteristics of halogen bearing hastingsite, scapolite and phlogopite from the Sangan iron skarn deposits, Northeastern Iran. Journal of Mineralogy, Petrology and Economic Geology, 92: 481–501. Retrieved February 1, 2023 from https://www.jstage.jst.go.jp/article/ganko/92/12/92_12_481/_pdf/-char/ja
Cabral, A.R. and Zeh, A., 2015. Detrital zircon without detritus: a result of 496 Ma-old fluid–rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil. Lithos, 212–215: 415–427. https://doi.org/10.1016/j.lithos.2014.10.011
Chapman, J.B., Gehrels, G.E., Ducea, M.N., Giesler, N. and Pullen, A., 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology, 439: 59–70. https://doi.org/10.1016/j.chemgeo.2016.06.014
Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K. and Bea, F., 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogy Magazine, 70(5): 517–543. https://doi.org/10.1180/0026461067050348
Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P., 2003. Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (Editors). Review in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469
El-Bialy, M.Z. and Ali, K.A., 2013. Zircon Trace Element Geochemical Constraints on the Evolution of the Ediacaran (600–614 Ma) Post-Collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chemical Geology, 360–361: 54–73. https://doi.org/10.1016/j.chemgeo.2013.10.009
Ferry, J.M. and Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contribution to Mineralogy and Petrology, 154(4): 429–437.  https://doi.org/10.1007/s00410-007-0201-0
Geisler, T., Pidgeon, R.T., Van Bronswijk, W. and Kurtz, R., 2002. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology, 191(1–3): 141–154. https://doi.org/10.1016/S0009-2541(02)00153-5
Ghasemi Siani M. and Mehrabi B., 2019. Mineralogy and mineral chemistry of silicate mineral of Dardvay Fe skarn ore deposit (Sangan mining area, NE Iran). Iranian Journal of Crystallography and Mineralogy, 26(4): 871–884. Retrieved February 1, 2023 from http://ijcm.ir/article-1-1197-en.html
Ghasemi Siani M. and Mehrabi B., 2020. Geothermometry of Dardvay anomaly skarn zones, Sangan mining area). Iranian Journal of Crystallography and Mineralogy, 28: 125–140. Retrieved February 1, 2023 from http://ijcm.ir/article-1-1423-en.html
Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Cao, S. and Zhang, R., 2022. Geochronology and geochemistry of zircons from fertile and barren intrusions in the Sangan mining area (NE Iran): Implications for tectonic setting and mineral exploration. Journal of Asian Earth Sciences 233: 105243. https://doi.org/10.1016/j.jseaes.2022.105243
Golmohammadi, A., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Mazaheri, S.A., 2015. Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran. Ore Geology Reviews, 65(part 2): 545–563. https://doi.org/10.1016/j.oregeorev.2014.07.005
Golmohammadi, A., Mazaheri, S.A., Malekzadeh Shafaroudi, A., Karimpour, M.H., 2014. Zircon U-Pb dating and geochemistry of Sarkhar and Bermani granitic rocks, East of Sangan iron mine, Khaf. Petrological Journal, 5(17): 83–102. Retrieved February 1, 2023 from https://ijp.ui.ac.ir/article_16160.html?lang=en
Harrison, T.M., Watson, E.B. and Aikman, A.B., 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 635–638. https://doi.org/10.1130/G23505A.1
Hofmann, A.E., Baker, M.B. and Eiler, J.M., 2014. Sub-micron-scale trace element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contribution to Mineralogy and Petrology, 168(3): 1057. https://doi.org/10.1007/s00410-014-1057-8
Hoskin, P.W.O., 2000. Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64(11): 1905–1923. https://doi.org/10.1016/S0016-7037(00)00330-6
Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637–648. https://doi.org/10.1016/j.gca.2004.07.006
Hoskin, P.W.O. and Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027
Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2007. Skarn Geochemistry - Mineralogy and Petrology of Source Rock Sangan Iron Mine, Khorasan Razavi, Iran. Scientific Quarterly Journal of Geosciences 17(65): 108–125. https://doi.org/10.22071/gsj.2008.58191
Lima, E.F. and Nardi, L.V.S., 1998. The Lavras do Sul Shoshonitic Association: implications for the origin and evolution of Neoproterozoic shoshonitic magmatism southernmost Brazil. Journal of South American Earth Sciences, 11(1): 67–77. https://doi.org/10.1016/S0895-9811(97)00037-0
Linnen, R.L. and Keppler, H., 1997. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the earth's crust. Contributions to Mineralogy and Petrology, 128(2): 213–227. https://doi.org/10.1007/s004100050304
Malekzadeh Shafaroudi A., Karimpour M. H. and Golmohammadi A., 2013. Zircon U-Pb geochronology and petrology of intrusive rocks in the C-north and Baghak districts, Sangan iron mine, NE Iran. Journal of Asian Earth Sciences, 64: 256–271. https://doi.org/10.1016/j.jseaes.2012.12.028
Malekzadeh Shafaroudi A., Mazhari N. and Ghaderi M., 2016. Geology, mineralogy, and chemistry of skarn zones and orebody in Ma’danjoo iron skarn prospect area, east of Sangan mine, Khaf, NE Iran. Iranian Journal of Crystallography and Mineralogy, 24(1): 83–98. Retrieved February 1, 2023 from  http://ijcm.ir/article-1-118-en.html
 Mazhari, N., Malekzadeh Shafaroudi, A. and Ghaderi, M., 2015. Geology, mineralogy and geochemistry of Ferezneh ferromanganese anomaly, east of Sangan mines complex, NE Iran. Journal of Economic Geology, 7(1): 23–37. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V7I1.44694 
 
Mazhari, N., Malekzadeh Shafaroudi, A., Ghaderi, M., Star Lackey, J., Lang, Farmer G. and Karimpour, M.H., 2017. Geochronological and Geochemical Characteristics of Fractionated I-type Granites Associated with the Skarn Mineralization in the Sangan Mining Region, NE Iran. Ore Geology Reviews, 84: 116–133. https://doi.org/10.1016/j.oregeorev.2017.01.003
Mehrabi, B., Ghasemi Siani, M., Zhang, R., Neubauer, F., Lentz, D.R., Tale Fazel, E., and Karimi Shahraki, B., 2021. Mineralogy, petrochronology, geochemistry, and fluid inclusion characteristics of the Dardvay skarn iron deposit, Sangan mining district. NE Iran. Ore Geology Reviews, 134: 104146. https://doi.org/10.1016/j.oregeorev.2021.104146
Miller, C.F., McDowell, S.M. and Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6): 529–532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Morton, A.C., Whitham, A.G. and Fanning, M.C., 2005. Provenance of Late Cretaceous-Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182(1–4): 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007
Nardi, L.V.S., Formoso, M.L.L., Jarvis, K., Oliveira, L., Bastos Neto, A.C. and Fontana, E., 2012. REE, Y, Nb, U, and Th contents and tetrad effect in zircon from a magmatic-hydrothermal F-rich system of Sn-rare metal–cryolite mineralized granites from the Pitinga Mine, Amazonia, Brazil. Journal of South American Earth Sciences, 33(1): 34–42. https://doi.org/10.1016/j.jsames.2011.07.004
Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K. and Lamarão, C., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335: 1–7. http://dx.doi.org/10.1016/j.chemgeo.2012.10.043
Nardi, L.V.S., Pla-Cid, J., Bitencourt, M.F. and Stabel, L.Z., 2008. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenitic Massif. Anais da Academia Brasileira de Ciências 80(2): 353–372. http://dx.doi.org/10.1590/s0001-37652008000200014
Nasdala, L., Hanchar, J.M., Rhede, D., Kennedy, A.K., and Váczi, T., 2010. Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology 269(3–4): 290–300. https://doi.org/10.1016/j.chemgeo.2009.10.004
Nemchin, A.A. and Pidgeon, R.I., 1997. Evolution of the Darling Range Batholith, Yilgarn Craton, Western Australia: a SHRIMP zircon study. Journal of Petrology, 38(5): 625–649. https://doi.org/10.1093/petroj/38.5.625
Poitrasson, F., Hanchar, J.M. and Schaltegger, U., 2002. The current state and future of accessory mineral research. Chemical Geology, 191(1–3): 3–24.  https://doi.org/10.1016/S0009-2541(02)00146-8
Schaltegger, U., 2007. Hydrothermal zircon. Elements 3(1): 51–79. https://doi.org/10.2113/gselements.3.1.51
Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chaleogenides. Acta Crystallographica Section A: Foundations and Advances, A32: 751–767.  https://doi.org/10.1107/S0567739476001551
Smythe, D.J. and Brenan, J.M., 2016. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth and Planetary Science Letters, 453: 260–266. https://doi.org/10.1016/j.epsl.2016.08.013
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts. Implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42(1): 313–345.  https://doi.org/10.1144/GSL.SP.1989.042.01.19
Thomas, J.B., Bodnar, R.J., Shimizu, N. and Sinha, A.K., 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta, 66(16): 2887–2901. https://doi.org/10.1016/S0016-7037(02)00881-5
Trail, D., Watson, E.B. and Tailby, N.D., 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. Nature: 480(7375): 79–82. https://doi.org/10.1038/nature10655
Trail, D., Watson, E.B. and Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70–87. https://doi.org/10.1016/j.gca.2012.08.032
Virgo, D., Mysen, B.O. and Kushiro, I., 1980. Anionic constitution of 1-atmosphere silicate melts: implications for the structure of igneous melts. Science, 208(4450): 1371–1373. https://doi.org/10.1126/science.208.4450.1371
Wang, X., Griffin, W.L. and Chen, J., 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1): 65–72. https://doi.org/10.2343/geochemj.1.0043
Watson, E.B., Wark, D.A. and Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contribution to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5
Whitney, D. L., and Evans, B. V., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wiedenbeck, M., All´e, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. and Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. and Zheng, Y.-F., 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
Zeh, A., Gerdes, A., Will, T.M. and Frimmel, H.E., 2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: examples from the Shackleton Range (Antarctica). Geochimica et Cosmochimica Acta, 74(16): 4740–4758. https://doi.org/10.1016/j.gca.2010.05.016
    
CAPTCHA Image