زمین‌ شیمی، ایزوتوپ‏ های S و Sr، و منشأ کانسار باریت شاه‏ نشین‏، شمال‌ غرب استان کردستان، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم، دانشگاه کردستان، کردستان، ایران

2 مدیر سازمان زمین‌شناسی غرب کشور، سنندج، ایران

چکیده

کانسار باریت شاه‌نشین (شمال‌شرق مریوان)، به‏گونه چینه‌سان و عدسی‌شکل، در میزبان سنگ ‏های ‏آتشفشانی کرتاسه‏ پسین جای‌دارد. باریت‏ ها به طور عمده تک کانی، درشت‌بلور و به شکل‌های صفحه ‏ای و تیغه ‏ای هستند. مقادیر δ34S بین 53/21-05/19‰ باریت‏ ها و مقایسه بین داده‌های 87Sr/86Sr نمونه ‏های باریت (70649/0 تا 70651/0) با نسبت‏ های آنها در آب دریای کرتاسه پسین (7075/0( و سنگ ‏های آتشفشانی میزبان (704/0 تا 705/0) بیانگر تشکیل کانسار شاه ‏نشین‏ توسط سیال‌های گرمابی زیردریایی است. این سیال دارای دو منشأ ماگمایی و آب دریاست. تغییر در نسبت اختلاط این دو سیال به تغییر در فراوانی عناصر جزئی، (ppm 3/175-6/4) REEs و نسبت‏ های LREE/HREE منجر‌شده است. نزدیکی مقادیر δ34S نمونه‏های باریت و آب دریای مرتبط با آنها‏ (22-20‰)، گویای مقدار کم گوگرد سیال ماگمایی، تشکیل باریت در جریان آزاد آب و شرایط اکسیدان بستردریاست. داده ‏های باریت شاه ‏نشین همسان کانسار نوع فلسیک کوروکو، نهشته‌شده در حوضه حاشیه قاره‏ای بین پهنه فرورانش و حاشیه غیرفعال است.

کلیدواژه‌ها


Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 606 pp. (in Persian)
Aloisi, G., Wallmann, K., Bollwerk, S.M., Derkachev, A., Bohrmann, G. and Suess, E., 2004. The effect of dissolved barium on biogeochemical processes at cold seeps. Geochimica et Cosmochimica Acta, 68(8): 1735–1748. https://doi.org/10.1016/j.gca.2003.10.010
Arjmandfar, J., 2017. Rationale, technical, and economic planning of Abdosamadi barite deposit. Central office of Kuhastan cooperative company, 1240, Sanandaj, Report, 380 pp. (in Persian)
Azizi, H. and Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45(4): 178–190. https://doi.org/10.1016/j.jog.2007.11.001
Azizi, H., Najari, M., Asahara, Y.J., Catlos, E., Shimizu, M. and Yamamoto, K., 2015. U-Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj-Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics, 660: 47–64. https://doi.org/10.1016/j.tecto.2015.08.008
Baioumy, H.M., 2015. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores. Journal of African Earth Sciences, 106: 99–107. https://doi.org/10.1016/j.jafrearsci.2015.03.016
Barrat, J-A., Keller, F., Amossé, J., Taylor, R., Nesbitt, R. and Hirata, T., 1996. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation. Geostandards and Geoanalytical Research, 20(1): 133–139. https://doi.org/10.1111/j.1751-908X.1996.tb00177.x
Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3/4): 219–230. https://doi.org/10.1016/0009-2541(91)90115-8
Bau, M. and Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1): 37–55. https://doi.org/10.1016/0301-9268(95)00087-9
Bender, M., Broecker, W., Gornitz, V., Miduel, U., Kay, R. and Suns, S., 1971. Geochemistry of three cores from the east Pacific rise. Earth and Planetary Science Letters, 12(4): 425–433. https://doi.org/10.1016/0012-821X(71)90028-8
Bonatti, E., Zerbi, M., Kay, R. and Rydell, H., 1976. Metalliferous deposits from the Apennine ophio-lites: Mesozoic equivalents of modern deposits from spreading centers. GSA Bulletin., 87(1): 83–94. https://doi.org/10.1130/0016-7606(1976)87<83:MDFTAO>2.0.CO;2  
Brewer, T.S., Ahall, K-L., Menuge, J.F., Storey, C.D. and Parrish, R.R., 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism. Precambrian Research, 134(3–4): 249–273. https://doi.org/10.1016/j.precamres.2004.06.003
Church, T.M. and Bernat, M., 1972. Thorium and uranium in marine barite. Earth and Planetary Science Letters, 14(1): 139–144. https://doi.org/10.1016/0012-821X(72)90093-3
Clark, S.H.B., Poole, F.G. and Wang, Z., 2004. Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India. Ore Geology Reviews, 24‌(1–2): 85–101. https://doi.org/10.1016/j.oregeorev.2003.08.009
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 199–260. https://doi.org/10.1016/0009-2541(80)90047-9
De Ronde, C., Faure, K., Bray, C.M., Chappell, D.A. and Wright, I.C., 2003. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Mineralium Deposita, 38: 217–233. https://doi.org/10.1007/s00126-002-0305-4
Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A. and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chemical Geology, 112(1–2): 145–167. https://doi.org/10.1016/0009-2541(94)90111-2
Douville, E., Bienvenu, P., Charlou, J.I., Donval, J.P., Fouquet, Y., Appriou, P. and Gamo, T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627–643. https://doi.org/10.1016/S0016-7037(99)00024-1
Ehya, F., 2012. Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineralogy and Petrology, 104: 81–93. https://doi.org/10.1007/s00710-011-0172-8
Eickmann, B., Thorseth, I.H., Peters, M., Strauss, H., Bröcker, M. and Pedersen, R.B., 2014. Barite in hydrothermal environments as a recorder of sub-seafloor processes: A multiple isotope study from the Loki’s Castle vent field. Geobiology, 12(4): 308–321. https://doi.org/10.1111/gbi.12086
Elderfield, H., 1988. The oceanic chemistry of the rare earth elements. Philosophical Transactions of the Royal Society of London, 325(1583): 105–106. https://doi.org/10.1098/rsta.1988.0046
Fouquet, Y., Pelleter, E., Konn, G., Chazot, G., Dupré, S., Alix, A.S., Chéron, S., Donval, J.P., Guyader, V., Etoubleau, J., Charlou, J.L., Labanieh, S. and Scalabrin, C., 2018. Volcanic and hydrothermal processes in submarine calderas: The Kulo Lasi example (SW Pacific). Ore Geology Reviews, 99: 314–343. https://doi.org/10.1016/j.oregeorev.2018.06.006
Franklin, J.M., Gibson, H.L., Jonasson, I.R. and Galley, A.G., 2005. Volcanogenic massive sulfide deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th anniversary Volume. New Haven, CT, USA, pp. 523–560. https://doi.org/10.5382/AV100.17
Giesemann, A., Jager, H.J., Norman, A.L., Krouse, H.P. and Brand, W.A., 1994. Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer. Analytical Chemistry, 66: 2816–2819. https://doi.org/10.1021/ac00090a005
‏Goldberg, E.D., Somayajulu, L.K., Galloway, J., Kaplan, I.R. and Faure, G., 1969. Differences between barites of marine and continental origins. Geochimica et Cosmochimica Acta, 33(2): 287–289. https://doi.org/10.1016/0016-7037(69)90145-8
Griffith, E.M. and Paytan, A., 2012. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59(6): 1817–1835. https://doi.org/10.1111/j.1365-3091.2012.01327.x
Guichard, R., Church, T.M., Treuil, M. and Jaffrezic, H., 1979. Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta, 43(7): 983–997. https://doi.org/10.1016/0016-7037(79)90088-7
Hannington, M.D., de Ronde, C.E.J. and Petersen, S., 2005. Seafloor tectonics and submarine hydrothermal systems. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th anniversary Volume. New Haven, CT, USA, pp. 111–141. https://doi.org/10.5382/AV100.06
Hannington, M.D., Poulsen, K.H., Thompson, J.F.H. and Sillitoe, R.H., 1999. Volcanogenic gold in the massive sulfide environment. Reviews in Economic Geology, 8: 325–356. https://doi.org/10.5382/Rev.08.14
Hannington, M.D. and Scott, R., 1988. Mineralogy and geochemistry of hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. The Canadian Mineralogist, 26(3): 603–625. Retrieved March 06, 2021 from https://pubs.geoscienceworld.org/canmin/article-abstract/26/3/603/12057/Mineralogy-and-geochemistry-of-a-hydrothermal?redirectedFrom=fulltext
Hanor, J.S., 2000. Barite- celestine geochemistry and environments of formation, in sulfate minerals-crystallography, geochemistry and environmental significance. Reviews in Mineralogy and Geochemistry, l40(1): 193–275. https://doi.org/10.2138/rmg.2000.40.4
Hasankhanloo, S., 2015. Geology, mineralogy, deformation and genesis of Abdossamadi barite deposit in the late Cretaceous volcano-sedimentary sequence, northeast Marivan. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 134 pp. (in Persian with English abstract)
Haynes, W.M., Lide, D.R. and Bruno, T.J., 2016. Abundance of elements in Earth's crust and in
 
     the sea. CRC Handbook of Chemistry and Physics, pp. 14–17 Retrieved from 20 February 2020 from https://www.amazon.com/CRC-Handbook-Chemistry-Physics-97th/dp/1498754287
Hein, J.R., 2002. Continental margin hydrothermal mineralization; Southern California Borderland. 32nd Underwater Mining Conference, Wellington, New Zealand.
Hein, J.R., Zierenberg, R.A., Maynard, J.B. and Hannington, M.D., 2007. Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep Sea Research Part II Topical Studies in Oceanography, 54(11): 1327–1349. https://doi.org/10.1016/j.dsr2.2007.04.011
Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S., 1993. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Economic Geology, 88(8): 2182–2209. https://doi.org/10.2113/gsecongeo.88.8.2182
Hofmann, R. and Baumann, A., 1984. Preliminary report on the Sr isotopic composition of hydrothermal vein barites in the Federal Republic of Germany. Mineralium Deposita, 19: 166–169. https://doi.org/10.1007/BF00204681
Jamieson, J.W., Hannington, M.D., Tivey, M.K., Hansteen, T., Williamson, N.M., Steward, M., Fietzke, J., Butterfield, D., Frische, M., Allen, L., Cousens, B. and Langer, J., 2016. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 173: 64–85. https://doi.org/10.1016/j.gca.2015.10.021
Jewell, P.W., 2000. Bedded barite in the geological record. In: C.R. Glenn, J. Lucas and L. Prevot (Editors), Marine authigenesis: from global to microbial. SEPM Society for Sedimentary Geology, Special Publication, USA, 66, pp. 147–161. https://doi.org/10.2110/pec.00.66.0147
Jewell, P.W. and Stallard, R.F., 1991. Geochemistry and paleoceanographic setting of central Nevada bedded barites. The Journal of Geology, 99(2): 151–170. https://doi.org/10.1086/629482
Kontak, D.J., Kyser, K., Gize, A. and Marshall, D., 2006. Structurally controlled vein barite mineralization in the Maritimes basin of eastern Canada: geological setting, stable isotopes, and fluid inclusions. Economic Geology, 101(2): 407–430. https://doi.org/10.2113/gsecongeo.101.2.407
Koski, R.A. and Hein, J.R., 2003. Stratiform barite deposits in the Roberts Mountains Allochthon, Nevada: A review of potential analogs in modern sea-floor environments. In: J.D. Bliss, P.R. Moyle and K.R. Long (Editors), Contributions to Industrial-Minerals Research. U.S. Geology Survey Bulletin, USA, pp. 1–17. https://doi.org/10.3133/b2209H
Kurian, S., Nath, B.N., Ramaswamy, V., Naman, D., Rao, G., Kamesh Raju, K.A., Selvaraj, K. and Chen, C.T.A., 2008. Possible, detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Marine Geology, 247(3–4): 178–193. https://doi.org/10.1016/j.margeo.2007.09.006
Kusakabe, M. and Robinson, B.W., 1977. Oxygen and sulfur isotope equilibria in the BaSO4-H2SO4-H2O system from 110 to 350°C and applications. Geochim. Cosmochim. Acta, 41(8): 1033–1040. https://doi.org/10.1016/0016-7037(77)90098-9
Kusakabe, M., Mayeda, S. and Nakamura, E., 1990. S, O, and Sr isotope systematics of active vent materials from the Mariana backarc basin spreading-axis at 88°N. Earth and Planetary Science Letters, 100(1–3): 275–282. https://doi.org/10.1016/0012-821X(90)90190-9
Lever, M.A., Rouxel, O., Alt, J.C., Shimizu, N., Ono, S., Coggon, R.M., Shanks, W.C., Lapham, L., Elvert, M., Prieto-Mollar, X., Hinrichs, K.U., Inagaki, F. and Teske, A., 2013. Evidence for microbial carbón and sulfur cycling in deeply buried ridge flank basalt. Science, 339(6125): 1305–1308. https://doi.org/10.1126/science.1229240
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1): 25–41. https://doi.org/10.1016/0169-1368(92)90017-F
Maanijou, M., Vafaei Zad, M. and Aliani, F., 2016. Fluid inclusion and sulfur stable isotope evidence for the origin of the Ahangran Pb-Ag deposit. Journal of Economic Geology, 7(2): 343–367. (in Persian with English abstract) https://doi.org/10.22067/econg.v7i2.25816
Martin, E.E., Macdougall, J.D., Herbert, T.D., Paytan, A. and Kastner, M., 1995. Strontium and neodymium isotopic analysis of marine barite separates. Geochimica et Cosmochimica Acta, 59(7): 1353–1361. https://doi.org/10.1016/0016-7037(95)00049-6
Marumo, K., 1989. The barite ore fields of Kuroko-type of Japan. In: M.K. de Brodtkorb (Editor), Non-metaliferous stratabound ore fields. Chapman and Hall, London, pp. 201–231. Retrieved July 10, 2018 from https://www.barnesandnoble.com/w/nonmetalliferous-stratabound-ore-fields-md-de-rodtkorb/1117015388
Maynard, J.B., Morton, J., Valdes-Nodarse, E.L. and Diaz-Carmona, A., 1995. Sr isotopes of bedded barites; guide to distinguishing basins with Pb-Zn mineralization. Economic Geology, 90(7): 2058–2064. https://doi.org/10.2113/gsecongeo.90.7.2058
Maynard, J.B. and Okita, P.M., 1991. Bedded barite deposits in the United States, Canada, Germany, and China; two major types based on tectonic setting. Economic Geology, 86(2): 364–376. https://doi.org/10.2113/gsecongeo.86.2.364
Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53(3): 745–750. https://doi.org/10.2113/gsecongeo.90.7.2058
Mohajjel, M. and Fergusson, C.L., 2014. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56(3): 263–287. https://doi.org/10.1080/00206814.2013.853919
Mohajjel, M., Fergusson, C.L. and Sahandi, R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj- Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4
Molinaro, M., Zeyen, H. and Laurencin, X., 2005. Lithospheric structure beneath the southeastern Zagros Mountains, Iran: recent slab break-off? Terra Nova, 17(1): 1–6. https://doi.org/10.1111/j.1365-3121.2004.00575.x
Monnin, C. and Cividini, D., 2006. The saturation state of the world’s ocean with respect to (Ba, Sr)SO4 solid solution. Geochimica et Cosmochimica Acta, 70(13): 3290–3298. https://doi.org/10.1016/j.gca.2006.04.002
Mousivand, F., Rastad, E., Emami, M.H. and Peter, J.M., 2013. Formation of Various Types of Volcanogenic Massive Sulfide (VMS) Deposits and Its Relationship With Tectono-Magmatic Evolution in the Sanandaj-Sirjan Zone. Scientific Quarterly Journal, Geosciences, 23 (90): 11–20. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2014.43901
Nakajima, T. and Sasaki, A., 1985. Sulfur isotopic ratio and pyrite/magnetite distribution in the Kuroko host rocks. Mining Geology, 35(4): 273–288. https://doi.org/10.11456/shigenchishitsu1951.35.273
Ohmoto, H., 1996. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geology Reviews, 10(3–6): 135–177. https://doi.org/10.1016/0169-1368(95)00021-6
Ohmoto, H. and Lasaga, A.C., 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems Geochimica et Cosmochimica Acta. 46(10): 1727–1745. https://doi.org/10.1016/0016-7037(82)90113-2
Ohmoto, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha-Arnond, V. and Barton, P.B.Jr., 1983. Chemical processes of Kuroko formation. In: H. Ohmoto and B.J. Skinner (Editors), The Kuroko and related volcanogenic massive sulfide deposits. Society of Economic Geologists, USA, 5, pp. 570–604. https://doi.org/10.5382/Mono.05.32
Paropkari, A.L., Ray, D., Balaram, V., Prakash, L.S., Mirza, I.H., Satyanarayana, M., Rao, T.G. and Kaisary, S., 2010. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Science, 38(3–4): 121–130. https://doi.org/10.1016/j.jseaes.2009.12.003
Paytan, A., Gray, E.T., Ma, A., Erhardt, A. and Faul, K., 2011. Application of sulphur isotopes for stratigraphic correlation. Isotopes in Environmental and Health Studies, 48(1): 195–206. https://doi.org/10.1080/10256016.2011.625423
 
Paytan, A., Kastner, M., Martin, E.E., Macdougall, J.D. and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, 366: 445–449. https://doi.org/10.1038/366445a0
Paytan, A., Mearon, S., Cobb, K. and Kastner, M., 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30(8): 747–750. https://doi.org/10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2
Pirajno, F., 1992. Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer-Verlag, London, 709 pp. https://doi.org/10.1017/S0016756800020392
Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., Sylva, S.P., Walsh, E., Pichler, T. and Rosner, M., 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 75(4): 1088–1123. https://doi.org/10.1016/j.gca.2010.11.008
Sánchez-Espańa, F.J., Velasco, F. and Yusta, I., 2000. Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain). Applied Geochemistry, 15(9): 1265–1290. https://doi.org/10.1016/S0883-2927(99)00119-5
Sato, T., 1977. Kuroko deposits: their geology, geochemistry and origin. Geological Society, London, Special Publications, 7: 153–161. https://doi.org/10.1144/GSL.SP.1977.007.01.18
Seal, R.R., Alpers, C.N. and Rye, R.O., 2000. Stable isotope systematics of sulfate mineral. Reviews in Mineralogy and Geochemistry, 40(1): 541–602. https://doi.org/10.2138/rmg.2000.40.12
Shahpasandzadeh, M. and Gurabjairi, A., 2006. Geological map of Bayenjub, scale 1:100,000. Geological Survey of Iran.
Sheikholeslami, M.R., 2015. Tectonstratigraphic units of southeastern part of the Sanandaj-Sirjan Zone. Scientific Quaterly Journal, Geosciences, 24(95): 243–252. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2015.42068
Shields, G., Kimura, H., Yang, J. and Gammon, P., 2004. Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: new francolitebound sulphate δ34S data and a critical appraisal of the existing record. Chemical Geology, 204(1–2):163–182. https://doi.org/10.1016/j.chemgeo.2003.12.001
Stern, R.J., Tamura, Y., Ishizuka, O., Shukano, H., Bloomer, S.H., Emb-ley, R.W., Leybourne, M., Kawabata, H., Nunokawa, A., Nichols, A.R.L., Kohut, E. and Pujana, I., 2013. Volcanoes of the Diamante cross-chain: Evidence for a mid-crustal felsic magma body beneath the southern Izu-Bonin-Mariana arc. Geological Society London Special Publication, 385(1): 235–255. https://doi.org/10.1144/SP385.6
Stix, J., Kennedy, B., Hannington, M., Gibson, H., Fiske, R., Mueller, W. and Franklin, J., 2003. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375–378. https://doi.org/10.1130/0091-7613(2003)031<0375:CFPATO>2.0.CO;2
Stöcklin, J., 1968. Structural history and tectonic of Iran; a review. AAPG Bulletin, 52(7): 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of ocean basalts: implications for mantle composition and process. Geological Society, London, Special Publication, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Tajeddin, H., Rastad, E., Yaghubpur, A. and Mohajjel, M., 2010. Evolution trends in the formation of Barika gold-rich massive sulfide deposit, West of Sardasht, NW Sanandej-Sirjan metamorphic zone, based on structure, texture and fluid inclusion studies. Journal of Economic Geology, 2(1): 97–121. (in Persian with English abstract) https://doi.org/10.22067/econg.v2i1.3688
Tütken, T., Eisenhauer, A., Wiegand, B. and Hansen, B.T., 2002. Glacial interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments. Changes in sediment provenance triggered by Barents Sea ice sheet. Marine Geology, 182(3-4): 351-372. https://doi.org/10.1016/S0025-3227(01)00248-1
Urabe, T., 1987. Kuroko deposit modeling based on a magmatic-hydrothermal theory. Mining Geology, 37(3):159–176. https://doi.org/10.11456/shigenchishitsu1951.37.159
Velasco, F., Sánchez-Espańa, J., Boyce, A.J., Fallick, A.E., Sáez, R. and Almodóvar, G.R., 1998. A new sulphur isotopic study of some IPB deposits: evidence of a textural control on the sulphur isotope composition. Mineralium Deposita, 34: 4–18. https://doi.org/10.1007/s001260050182
Williams-Jones, A.E., Samson, I.M. and Olivo, G.R., 2000. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Economic Geology, 95(2): 327–342. https://doi.org/10.2113/95.2.327
Yang, K. and Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383: 420–423. https://doi.org/10.1038/383420a0
Zarasvandi, A.R, Zaheri, N., Pourkaseb, H., Chrachi, A. and Bagheri, H., 2014. Geochemistry and fluid-inclusion microthermometry of the Farsesh barite deposit, Iran. Geologos, 20(3): 201–214. https://doi.org/10.2478/logos-2014-0015