زمین شناسی، کانی شناسی، ساخت و بافت، زمین شیمی و منشأ کانسار اکسید‌ آهن-‌آپاتیت گلستان آباد (خاور زنجان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 آزمایشگاه های مرکز پژوهش های کاربردی علوم زمین سازمان زمین شناسی و اکتشافات معدنی کشور، کرج، ایران

چکیده

کانسار اکسید آهن-‌آپاتیت گلستان­‌آباد یکی از کانه‌­زایی­‌های آهن در کمربند فلززایی طارم-‌هشتجین است که در فاصله حدود 30 کیلومتری خاور شهر زنجان قرار‌گرفته است. واحدهای سنگی موجود در این منطقه عبارت از توالی آتشفشانی-‌رسوبی مربوط به زیرعضو آمند سازند کرج به همراه توده‌­های نفوذی با ترکیب کوارتز مونزودیوریت، پیروکسن کوارتز مونزودیوریت و کوارتز دیوریت پورفیری است. توده­‌های نفوذی کوارتز مونزودیوریت و پیروکسن کوارتز مونزودیوریت دارای ماهیت کالک‌­آلکالن پتاسیم بالا بوده و از نوع متآلومین و I-type هستند. این توده‌­ها در محیط تکتونوماگمایی حاشیه فعال قاره­ای تا پس از برخورد تشکیل شده­‌اند. کانه‌­زایی اکسید آهن-‌آپاتیت در کانسار گلستان‌­آباد به‌­صورت عدسی­‌ها و رگه-‌رگچه‌های اکسید آهن-‌آپاتیت در داخل توده نفوذی کوارتز مونزودیوریتی و پیروکسن کوارتز مونزودیوریتی و به مقدار کم در داخل سنگ­‌های آتشفشانی-‌رسوبی ائوسن مجاور توده نفوذی تشکیل‌شده است. کانه­‌های اصلی در این کانه‌­زایی شامل مگنتیت، آپاتیت و اکتینولیت است. ساخت و بافت­‌های موجود شامل رگه-‌رگچه­‌ای، نواری، توده‌ای، بِرشی، دانه­‌پراکنده، استوک­ورک، جانشینی، بازماندی و پُرکننده فضاهای خالی است. کانسار اکسید آهن-‌‌‌آپاتیت گلستان‌­آباد شباهت‌­های زیادی با ذخایر آهن نوع کایرونا از نظر مجموعه کانی‌‌­شناسی، ساخت و بافت ماده معدنی، دگرسانی سنگ دیواره و زمین­‌شیمی نشان می‌­دهد.

کلیدواژه‌ها


Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2002. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2): 67–95.
Amini, B., 1997. Geological Map of Tarom, scale 1:100000. Geological Survey of Iran.
Belousova, E., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.L., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622.
Besharati, S., Nabatian, Gh. and Sadeghi, A, 2010. Skarn mineralization in the Arjin region (Southwest Soltanieh). The 1th Conference of the Iranian Economic Geological Society, Ferdowsi University of Mashhad, Mashhad, Iran. (in Persian with English abstract)
Boomeri, M., 2012. Rare earth minerals in Esfordi magnetite-apatite deposit, Bafq district. Scientific Quarterly Journal, Geosciences, 22(85): 71–82.
Chappell, B.W. and White, A.J.R., 1992. I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1–2): 1–26.
Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200.
Dill, H.G., 2010. The chessboard classification schome of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100(1–4): 1–420.
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews, 9(6): 489–510.
Gleason, J.‌D., Marikos, M.‌A., Barton, M.‌D. and Johnson, D.‌A., 2000. Neodymium isotope study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) system. Geochemical et Cosmochemica Acta, 64(6): 1059–1068.
Hastie, A.R., Ker, A.C., Pearce, J.A. and Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48(12): 2341–2357.
Hildebrand, R.S., 1986. Kiruna- type deposit: their origin and relationship to inter mediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology, 81(3): 640–659.
Hitzman, M.W., 2000. Iron oxide-Cu-Au deposits: What, where, when and why? In: T.M. Porter (Editor), Hydrothermal iron oxide copper-gold and related deposits: A global perspective. Vol. 1.  Australian Mineral Foundation, Adelaide, pp. 9–25
Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Protrozoic iron oxide (Cu-U-Au-LREE) deposits. Precambrian Research, 58(1): 241–287.
Hofmann, A.W., 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(13): 297–‌314.
Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stable isotope study of the Esfordi apatite- magnetite deposit, Central Iran. Economy Geology, 102(6): 1111–1128.
Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144(1): 38–‌56.
Kerr, I.D., 1998. Mineralogy, Chemistry and hydrothermal evolution of the Pea Ridge Fe-oxide-REE Deposit, Missouri, USA. Unpublished M.Sc. Thesis, University of Windsor, Ontario, Canada, 112 pp.
Kordian, Sh., 2018. Geochemistry of REE in Golestan Abad iron oxide- apatite deposit (east of Zanjan). Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 122 pp. (in Persian with English abstract)
Kuster, D. and Harms, U., 1998. Post-collisional potassic granitoids form the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos, 45(1–4): 177–195.
Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G. and Qi, C., 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat- slab? Lithos, 96(1–2): 186–204.
Loberg, B.E.H. and Horndal, A.K., 1983. Ferride geochemistry of Swidish Precambrian iron ores. Mineralium Deposita, 18(3): 487–504.
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253.
Middlemost, E.A.K., 1985. Magma and magmatic rocks. Longman, London and New York, 266 pp.
Moghaddasi, S.J., Ebrahimi, M. and Mohammadi, F., 2019. Mineralogy, geochemistry and genesis of Gozaldarreh iron deposit, southeast Zanjan. Journal of Economic Geology, 11(1): 33–55. (in Persian with English abstract)
Mokhtari, M.A.A., Hossein Zadeh, Gh. and Emami, M.H., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Science, 122(3): 795–807.
Mokhtari, M.A.A., Kouhestani, H. and Gholizadeh, K., 2019. Mineral chemistry and formation conditions of calc-silicate minerals of Qozlou Fe skarn deposit, Zanjan Province, NW Iran. Arabian Journal of Geosciences, 12(21): 1–28. (Article; 658)
Mokhtari, M.A.A., Sadeghi, M. and Nabatian, Gh., 2017. Geochemistry and potential resource of rare earth element in the IOA deposits of Tarom area, NW Iran. Ore Geology Reveiws, 92: 529–541.
Muller, D. and Groves, D.I., 1997. Ptassic igneous rocks and associated gold- copper mineralization. Springer Verlag, Switzerland, 242 pp.
Nabatian, Gh., 2012. Geology, Geochemistry and Evolution of Iron Oxide-apatite Deposits in the Tarom Volcano-plutonic Belt, Western Alborz. Unpublished Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 375 pp. (in Persian with English abstract)
Nabatian, Gh. and Ghaderi, M., 2013. Oxygen isotope and fluid inclusion study of the Sorkheh-Dizaj iron oxide-apatite deposit, NW Iran. International Geology Review, 55(4): 397–410.
Nabatian, Gh. and Ghaderi, M., 2014. Mineralogy and geochemistry of the rare earth elements in iron oxide-apatite deposits of the Zanjan region. Scientific Quarterly Journal, Geosciences. 24(93): 157–170. (in Persian with English abstract)
Nabatian, Gh., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V. and Honarmand, M., 2014a. Geology, alteration, age and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran. Mineralium Deposita, 49(2): 217–234.
Nabatian, G., Ghaderi, M., Daliran, F. and Rashidnejad Omran, N., 2012. Sorkhe- Dizaj iron oxide- apatite ore deposit in the Cenozoic Alborz- Azarbaijan magmatic belt, NW Iran. Resource Geology, 63(1): 42–56.
Nabatian, Gh., Ghaderi, M., Neubauer, F., Honarmand, M., Liu, X., Dong, Y., Jian, S.Y.,Quadt, A. and Bernroider, M., 2014b. Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos, 184–187: 324–345.
Nabatian, G., Ghaderi, M., Rashidnejad Omran, N. and Daliran, F., 2009. Geochemistry and genesis of Sorkhe- Dizaj apatite- beraing iron oxide deposit, southeast Zanjan. Journal of Economic geology, 1(1): 19–46. (in Persian with English abstract)
Nezafati, N., 2006. Au-Sn-W-Cu-Mineralization in the Astaneh-Sarband Area, West Central Iran, including a comparison of the ores with ancient bronze artifacts from Western Asia. Unpublished Ph.D. Thesis, University of Tuebingen, Tuebingen, Germany, 114 pp.
Parak, T., 1975. Kiruna iron ores are not intrusive-magmatic ores of the Kiruna type. Economic Geology, 70(7): 1242–1258.
Schandle, E.S. and Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629–642.
Shafaie Pour, N., Mokhtari, M.A.A., Kouhestani, H. and Honarmand, M., 2020. Petrology and geochemistry of the Qozlou granitoid and related Fe skarn (west Zanjan). Journal of Economic Geology, 12(1): 47–76. (in Persian with English abstract)
Shahbazi, S., Ghaderi, M. and Rashidnejhad Omran, N., 2015. Mineralization stages and iron source of Bashkand deposit based on mineralogy, structure, texture and geochemical evidence, Southwest of Soltanieh. Scientific Quarterly Journal, Geosciences, 24(95): 355–372. (in Persian with English abstract)
Shand, S.J., 1943. Eruptive Rocks: Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Johan Wiley and Sons, New York, 350 pp.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Wilson, M., 1989. Igneous petrology. Unwin Hyman, London, 466 pp.
Wright, J.B. and McCurry, P., 1997. Geochemistry of calc-alkaline volcanic in northwestern Nigeria, and a possible PAN-AFRICAN suture zone. Earth and Planetary Science Letters, 37(1): 90–96.
Wu, F., Jahnb, B., Wildec, S.A., Lod, C.H., Yuie, T.F., Lina, Q., Gea, W. and Suna, D., 2003. Highly fractionated I-type granites in NE China II: isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3–4): 191–204.
CAPTCHA Image