مس دوگان (جنوب شاهرود): کانه زایی مس- مولیبدن پورفیری در کمان ماگمایی ترود- چاه شیرین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌ شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استاد، دانشکده کانی‌شناسی و منابع معدنی، دانشگاه صنعتی کلاوستهال، کلاوستهال- زلرفلد، آلمان

چکیده

کانسار مس- مولیبدن دوگان در جنوب شاهرود و در کمربند ماگمایی شمال ایران مرکزی واقع‌شده است. در این منطقه، توده­ای نیمه عمیق با ترکیب میکرودیوریتی به درون سنگ‌های آتشفشانی ائوسن تزریق و موجب کانه­ زایی شده است. کانه ­زایی به صورت رگه- رگچه ­ای و دانه پراکنده بوده و از لحاظ کانی‌شناسی، کانسنگ از کانی‌های اولیه پیریت، کالکوپیریت، بورنیت، مولیبدنیت و کانی‌های ثانویه مانند کالکوسیت، اکسید- هیدروکسیدهای آهن و مالاکیت تشکیل‌شده است. پهنه ­بندی دگرسانی در کانسار دوگان به صورت حلقوی و هم‌مرکز بوده و از پتاسیک در بخش مرکزی تا دگرسانی فیلیک و سپس دگرسانی­ پروپیلیتی در حواشی سامانه تغییر می­ کند. دگرسانی آرژیلیک در بخش‌های بالایی و سطحی پهنه فیلیک مشاهده می ­شود. بر اساس بررسی میان‌بارهای سیال، سیالات مولد دگرسانی پتاسیک غنی از مایع و مقدار اندکی بخار (L+V) بوده؛ درجه حرارت بالا (398 تا 513 درجه سانتی­ گراد) و شوری زیاد (بیش از 50 درصد وزنی NaCl) دارند. احتمالاً این سیالات دارای منشأ ماگمایی بوده و عامل ایجاد رگه ­های V1 و V2 بوده­اند. دگرسانی فیلیک (رگه های V3) بر اثر فعالیت سیالات اغلب جوی حاوی فازهای بخار + مایع (V+L) با درجه حرارت کمتر (210 تا 360 درجه سانتی­ گراد) و شوری کمتر از 10 درصد وزنی NaCl ایجاد شده است. از نظر زمین‌شیمی، نمونه­ های آذرین مورد بررسی در قلمرو ماگماهای کالک ­آلکالن حاشیه فعال قاره ­ای قرار‌گرفته ‌اند و ماهیت آداکیتی دارند. ماهیت نیمه عمیق سنگ‌های میزبان (میکرودیوریت) و تشکیل آنها در کمان ماگمایی، حضور دگرسانی پتاسیک در بررسی‌های سطحی و عمقی، شوری و دمای بالای سیالات گرمابی، نوع رخداد کانه ­زایی (پراکنده و رگه- رگچ ه­ای)، پتانسیل بالای مس و مولیبدن و پهنه ­بندی دگرسانی‌های موجود همگی بیانگر رخداد یک سامانه پورفیری است. به طورکلی، محدوده معدنی دوگان از نظر محیط زمین‌ساختی تشکیل، جنس سنگ میزبان، بافت و ساخت، کانی‌شناسی و پهنه ­بندی دگرسانی شباهت‌های زیادی با کانسارهای مس- مولیبدن پورفیری نشان می‌دهد.

کلیدواژه‌ها


Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L. 2015. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70: 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Bodnar, R.‌J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorites studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Calagari, A.A., 1997. Geochemical, stable isotope, noble gas and fluid inclusion studies of mineralization and alteration at Sungun porphyry copper deposit, East Azarbaidjan, Iran: Implications for genesis. Ph.D. Thesis, the University of Manchester, Manchester, England, 550 pp. Retrieved April 26, 2023 from https://www.proquest.com/openview/c4af0175edfcdd6c68aa05f548baef45
Clark, D.A., Geuna, S. and Schmidt, P.W., 2003. Predictive magnetic exploration models for porphyry, epithermal and iron oxide copper‐gold deposits: Implications for exploration. AMIRA Exploration and Mining Report 1073R, 398 pp.
Dilles, J.H. and Einaudi, M.T., 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction. Economic Geology, 87(8): 1963–2001. https://doi.org/10.2113/gsecongeo.87.8.1963
Guilbert, J.M. and Park, C.F., 1986. The Geology of Ore Deposits. Freeman, New York, 650 pp.
Gustafson, L.B. and Hunt, J.P., 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5): 857–912. https://doi.org/10.2113/gsecongeo.70.5.857
Hedenquist, J.W., Arribas, A. and Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373–404. https://doi.org/10.2113/gsecongeo.93.4.373
Houshmandzadeh, A.R., Alavi Naini, M. and Haghipour, A.A., 1978. Evolution of geological phenomenon in Torud area. Geological Survey of Iran, Tehran, Report 5H, 136 pp. (in Persian)
Irvine, T.‌N. and Baragar, W.‌R.‌A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
John, D.‌A., Ayuso, R.‌A., Barton, M.‌D., Blakely, R.J., Bodnar, R.‌J., Dilles, J.‌H. and Vikre, P.‌G., 2010. Porphyry copper deposit model. Chapter B of Mineral deposit models for resource assessment.US Geological Survey, Reston, VA, Scientific Investigations Report 2010-5070-B, 169 pp. https://doi.org/10.3133/sir20105070B
Lang, J.R. and Titley, S.R., 1998. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93(2): 138–170. https://doi.org/10.2113/gsecongeo.93.2.138
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/S0024-4937(98)00076-0
Mehrabi, B. and Ghasemi Siani, M., 2012. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran. Journal of the Geological Society of India, 80(4): 563–578. https://doi.org/10.1007/s12594-012-0177-x
Moyle, A.J., 1990. Ladolam gold deposit, Lihir island. In: F.E. Hughes (Editor), Geology of the mineral deposits of Australia and Papua New Guinea. Melbourne, Australian Institute of Mining and Metallurgy, pp. 1793–1805.
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental basalts and mantle xenoliths, Nantwich, Cheshire: Shiva Publications, pp. 230–249. Retrieved Jun 04, 2017 from https://orca.cardiff.ac.uk/id/eprint/8626
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Perelló, J., Sillitoe, R.H., Mpodozis, C., Brockway, H. and Posso, H., 2012. Geologic setting and evolution of the porphyry copper-molybdenum and copper-gold deposits at Los Pelambres, central Chile. In: J.F. Hedenquist, M. Harris and F. Camus (Editors), Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Geo Science world, Tysons Galleria, 79–104. Retrieved January 01, 2012 from https://pubs.geoscienceworld.org/segweb/books/book/1385/chapter-abstract/107046729/Geologic-Setting-and-Evolution-of-the-Porphyry?redirectedFrom=fulltext
Richards, J.P., Boyce, A.J. and Pringle, M.S., 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271–305. https://doi.org/10.2113/gsecongeo.96.2.271
Ronacher, E., Richards, J.P. and Johnston, M.D., 2000. Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita, 35(7): 683–688. https://doi.org/10.1007/s001260050271
Rowins, S.M., 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491–494. https://doi.org/10.1130/0091-7613(2000)28<491:RPCDAN>2.0.CO;2
Rudnick, R.L. and Gao, S. 2003. Composition of the Continental Crust. In: H.D. Holland and K.K. Turekian, (Editors), Treatise on Geochemistry, V. 3, The Crust, Elsevier-Pergamon, Oxford, pp. 1–64.
Sheibi, M. and Mousivand, F., 2018. Petrology, geochemistry and magnetic susceptibility of Chah-Musa pluton- host of Cu mineralization- (NW Toroud, South Shahrood) with special reference to the mineralization. Middle East Mines & Mineral Industries Development Holding Company of Iran, Tehran, unpublished Report 1, 200 pp. (in Persian)
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E. and Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65 (part 1): 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Tadayon, M. and Rashid Katal, R.K., 2020. Structural analysis of the Dogan copper mine area, north Toroud fault zone (Central Iran). Journal of Tectonics, 4(13): 87–111. (in Persian with English abstract) https://doi.org/10.22077/jt.2021.1603
Tale Fazel, E., Mehrabi, B. and GhasemiSiani, M., 2019. Epithermal systems of the Torud–Chah Shirin district, northern Iran: Ore-fluid evolution and geodynamic setting. Ore Geology Reviews, 109: 253–275. https://doi.org/10.1016/j.oregeorev.2019.04.014
Warr, L.N., 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3): 291–320. https://doi.org/10.1180/mgm.2021.43
Waterman, G. ‌C. and Hamilton, R.‌L., 1975. The Sar Cheshmeh porphyry copper deposit. Economic Geology, 70(3): 568–576. https://doi.org/10.2113/gsecongeo.70.3.568
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55‌(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London, 466 pp. https://doi.org/10.1007/978-1-4020-6788-4
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran. International Geology Review, 47(6): 620–646. https://doi.org/10.2747/0020-6814.47.6.620
CAPTCHA Image