پتروژنز گارنت‌- ملانیت‌‌ ها در مونزودیوریت‌ های جنوب‌ غرب جندق (شمال‌ غرب خرد قاره شرق- ایران مرکزی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، گروه زمین‌ شناسی، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه پیام نور، تهران، ایران

3 استاد، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

استوک مونزودیوریتی گدارسیاه با سن ائوسن زیرین در جنوب‌غربی شهر جندق (شمال‌شرق اصفهان) و شمال‌غربی خرد قاره شرق- ایران مرکزی قرار دارد. کانی‌های اصلی تشکیل‌دهنده این مونزودیوریت‌ها پلاژیوکلاز، فلدسپار پتاسیم، کلینوپیروکسن، فلوگوپیت و گارنت است که در زمینه‌ای ریز بلور از فلدسپار قرار گرفته‌اند. بافت اصلی این سنگ‌ها گرانولار، پورفیریتیک و پوئی‌کلیتیک است. در برخی موارد، این نمونه‌ها حاوی بلورهای شکل‌دار تا نیمه شکل‌دار گارنت هستند که در آنها ادخال‌هایی از کلینوپیروکسن آذرین و کانی‌های زمینه شامل فلدسپار وگرافیت دیده می‌شود. این گارنت‌ها از نوع آندرادیت غنی از تیتیان و ملانیت کلسیم‌دار از سری محلول جامد آندرادیت- گروسولار است. الگوی منطقه‌بندی شیمیایی در گارنت‌های مورد بررسی تأیید می‌کند که این کانی‌ها دارای منشأ غیرماگمایی و از نوع دگرگونی هستند. وجود منطقه‌بندی شیمیایی ناپیوسته و الگوی تغییرات اعضای پایانی این گارنت‌ها نشان می‌دهد که آنها در شرایط عدم تعادل همراه با تغییر در شرایط اکسایش محیط تشکیل شده‌اند. وجود درشت‌بلورهای شکل‌دار گارنت با ادخال‌هایی از کلینوپیروکسن‌های آذرین، اسکاپولیت حاصل از تجزیه پلاژیوکلازها و فلوگوپیت‌هایی با منشأ دگرگونی در مونزودیوریت‌های مورد بررسی نشان می‌دهد که گارنت‌های مورد بررسی دارای منشأ دگرگونی متاسوماتیک هستند و به خرج کلینوپیروکسن‌های آذرین تشکیل شده‌اند. تمام شواهد زمین‌شیمیایی و سنگ‌نگاری گارنت‌های مورد بررسی تأیید می‌کند که در اثر نفوذ توده مونزودیوریتی گدارسیاه با سن ائوسن زیرین، در رسوبات آهکی (دولومیتی) کربونیفر، اندواسکارن یا اسکارن واکنشی تشکیل‌شده است که در مقیاس میلی‌متری در بررسی‌های میکروسکوپی به خوبی قابل تشخیص است.

کلیدواژه‌ها


Ague, J.J. and Carlson, W.D., 2013. Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements, 9(6): 439–445. https://doi.org/10.2113/gselements.9.6.439
Ahangari, M., 2018. Origin of tourmaline and garnet in west Qushchi mylonite granite (NW Iran); constrains on petrogenesis of parental rock. Iran: Iranian Journal of Crystallography and Mineralogy, 25(4): 697–710. (in Persian) https://doi.org/10.29252/ijcm.25.4.697
Aistov, L., Melanikov, B., Krivyokin, B., Morozov, L. and Kiristaev, V., 1984. Geology of Khur Area (Central Iran). Geological Survey of Iran, Tehran, Report 20, 131 pp.
Andersen, T.B., 1984. Inclusion patterns in zoned garnets from Magerøy, north Norway. Mineralogical Magazine, 48(346): 21–26. https://doi.org/10.1180/minmag.1984.048.346.03
Ayati, F., 2017. Mineralogy and origin of iron rich garnetites in Choogan Area-North of Meimeh. Scientific Quarterly Journal of Geosciences, 27(105): 3–12. https://doi.org/10.22071/gsj.2017.54125
Bagheri, S. and Stampfli, G.M., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implication. Tectonophysics, 451(1–4): 123–155. https://doi.org/10.1016/j.tecto.2007.11.047
Baxter, E.F., Caddick, M.J. and Ague, J.J., 2013. Garnet: Common mineral, uncommonly useful. Elements, 9(6): 415–419. https://doi.org/10.2113/gselements.9.6.415
Baxter, E.F., Caddick, M.J. and Dragovic, B., 2017. Garnet: A Rock-Forming Mineral Petrochronometer. Reviews in Mineralogy & Geochemistry, 83(1): 469–533. https://doi.org/10.2138/rmg.2017.83.15
Berra, F., Zanchi, A., Angiolini, L., Vachard, D., Vezzoli, G., Zanchetta, S., Bergomi, M., Javadi, H.‌R. and Kouhpeyma, M., 2017. The upper Palaeozoic Godar-e-Siah Complex of Jandaq: evidence and significance of a North Palaeotethyan succession in Central Iran. Journal of Asian Earth Sciences, 138: 272–290. https://doi.org/10.1016/j.jseaes.2017.02.006
Carlson, W.D., 2002. Scales of disequilibrium and rates of equilibration during metamorphism. American Mineralogist, 87(2–3): 185–204. https://doi.org/10.2138/am-2002-2-301
Carlson, W.D., 2006. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist, 91(1): 1–11. https://doi.org/10.2138/am.2006.2043
Carswell, D.‌A., 1975. Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Physics and Chemistry of the Earth, pp. 417–429. https://doi.org/10.1016/B978-0-08-018017-5.50034-1
Chakhmouradian, A.‌R. and McCammon, C.‌A., 2005. Schorlomite: a discussion of the crystal chemistry, formula and inter-species boundaries. Phys. Chem, 32: 277–289. https://doi.org/10.1007/s00269-005-0466-7
Chavideh, M., Tabatabaei Manesh, M. and Makizadeh, M., 2018. Petrology of skarns in the north and the southwest of Qazan (South Qamsar) with emphasis on the mineral chemistry of garnet and pyroxene. Petrological Journal, 9(1): 111–132. https://doi.org/10.22108/ijp.2017.100423.0
Chen, N.S., Sun, M., You, Z.D. and Malpas, J., 1998. Well-preserved garnet growth zoning in granulite from the Dabie Mountains, central China. Journal of Metamorphic Geology, 16(2): 213–222. https://doi.org/10.1111/j.1525-1314.1998.00074.x
Ciboanu, C.‌L. and Cook, N.‌J., 2004. Skarn texture and a case study: The ocna de Fier- Dognccea ore field, Banat, Romania. Ore Geology Reviews, 24(3–4): 315–370. https://doi.org/10.1016/j.oregeorev.2003.04.002
Clarke, D.B., 2007. Assimilation of xenocrysts in granitic magmas: principles, processes, proxies, and problems. The Canadian Mineralogist, 45(1): 5–30. https://doi.org/10.2113/gscanmin.45.1.5
D’Antonio, M. and Kristensen, M.B., 2005. Hydrothermal alteration of oceanic crust in the West Philippine Sea Basin (Ocean Drilling Program Leg 195, Site 1201): inferences from a mineral chemistry investigation. Mineralogy and Petrology, 83: 87–112. https://doi.org/10.1007/s00710-004-0060-6
Dahlquist, J.‌A., Galindo, C., Pankhurst, R.‌J., Rapela, C.‌W., Alasino, P.‌H., Saavedra, J. and Fanning, C.M., 2007. Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos, 95(3–4): 177–207. https://doi.org/10.1016/j.lithos.2006.07.010
Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock forming minerals, 2nd edition. Longman Scientic and Technical, New York, 699 pp.
Delaney, J.‌S., Smith, J.‌V., Carswell, D.‌A. and Dawson, J.‌B., 1980. Chemistry of micas from kimberlites and xenoliths—II. Primary-and secondary-textured micas 140 from peridotite xenoliths. Geochimica et Cosmochimica Acta, 44(6): 857–872. https://doi.org/10.1016/0016-7037(80)90266-5
Deng, X.D., Li, J.W., Luo, T. and Wang, H.Q., 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U–Pb geochronometry. Contributions to Mineralogy and Petrology, 172‌(71): 1–11. https://doi.org/10.1007/s00410-017-1389-2
Dingwell, D.‌B. and Brearley, M., 1985. Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada. Contributions to Mineralogy and Petrology, 90: 29–35. https://doi.org/10.1007/BF00373038
Dziggel, A., Wulff, K., Kolb, J., Meyer, F.M. and Lahaye, Y., 2009. Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: Evidence from the Navachab gold deposit, Namibia. Journal of Chemical Geology, 262 (3–4): 262–276. https://doi.org/10.1016/j.chemgeo.2009.01.027
Einaudi, M.T. and Burt, D.M., 1982. Introduction; Terminology, Classification, and Composition of Skarn Deposits.Economic Geology, 77(4): 745–754. https://doi.org/10.2113/gsecongeo.77.4.745
Finlay, C.A. and Kerr, A., 1979. Garnet growth in a metapelite from the Moinian rocks of northern Sutherland, Scotland. Contributions to Mineralogy and Petrology, 71(2): 185–191. https://doi.org/10.1007/BF00375435
Foster, M.D., 1960. Interpretation of the composition of the tri octahedral micas. United States Geological Survey Professional Paper, 354‌(1): 11–49. https://doi.org/10.3133/pp354B
Gaspar, M., Knaack, C., Meinert, L.D. and Moretti, R., 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et cosmochimica acta, 72(1): 185–205. https://doi.org/10.1016/j.gca.2007.09.033
George, F.R., Gaidies, F. and Boucher, B., 2018. Population-wide garnet growth zoning revealed by LA-ICP-MS mapping: implications for trace element equilibration and syn-kinematic deformation during crystallisation. Contributions to Mineralogy and Petrology, 173(74): 1–22. https://doi.org/10.1007/s00410-018-1503-0
Green, T.‌H., 1992. Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1–2): 429–438. https://doi.org/10.1017/S0263593300008105
Grew, E.‌S., Locock, A.‌J., Mills, S.‌J., Galuskina, I. O., Galuskin, E.‌V. and Hålenius, U., 2013. Nomenclature of the garnet supergroup. American Mineralogist, 98(4): 785–811. https://doi.org/10.2138/am.2013.4201
Gwalani, L.‌G., Rock, N.‌M.‌S., Ramaswamy, R., Griffin, B.‌J. and Mulai, B.‌P., 2000, Complexly zoned Ti-rich melanite–schorlomite garnets from Ambadungar carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, western India. Journal of Asian Earth Sciences., 18(2): 163–176. https://doi.org/10.1016/S1367-9120(99)00053-X
Hajialioghli, R. and Moazzen, M., 2009. Heterogeneous garnets in the alkaline feldspathoid-bearing rocks from the Kaleybar pluton, northern Azerbaijan (NW Iran). Iranian Journal of Crystallography and Mineralogy, 17(2): 203–212. (in Persian) Retrieved February 10, 2024 from http://ijcm.ir/article-1-581-.pdf
Harangi, S.‌Z., Downes, H., Kósa, L., Szabo, C.‌S., Thirlwall, M.‌F., Mason, P.‌R.‌D. and Mattey, D., 2001. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern–Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10): 1813–1843. https://doi.org/10.1093/petrology/42.10.1813
Huggins, F.‌E., Virgo, D. and Huckenholz, H.‌G., 1977. Titanium-containing silicate garnet; I, The distribution of Al, Fe (super 3+), and Ti (super 4+) between octahedral and tetrahedral sites. American Mineralogist, 62(5–6): 475–490. Retrieved February 10, 2024 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/62/5-6/475/104579/Titanium-containing-silicate-garnet-I-The
Hwang, S.L., Shen, P., Yui, T.F. and Chu, H.T., 2003. On the mechanism of resorption zoning in metamorphic garnet. Journal of Metamorphic Geology, 21(8): 761–769. https://doi.org/10.1046/j.1525-1314.2003.00477.x
Jamshidzaei, A., 2021. Petrology of felsic stock and intermediate Dikes of Eocene from Godar-e-Siah area (SW of Jandaq, Isfahan province). Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 176 pp.
Jamshidzaei, A. and Torabi., 2018. Petrology of porphyritic quartz monzodiorite stock and Eocene Dikes with adakitic nature from SW of Jandaq (NE of Isfahan province); Evidence of oceanic crust subduction around the Central-East Iranian Microcontinent. Journal of Economic Geology 10(2): 355–379. )in Persian with English abstract) https://doi.org/10.22067/econg.v10i2.63996
Jamshidzaei, A., Torabi, G., Morishita, T. and Tamura, A., 2021. Eocene dike swarm and felsic stock in Central Iran: roles of metasomatized mantle wedge and Neo-Tethyan slab. Journal of Geodynamics, 145: 101844. https://doi.org/10.1016/j.jog.2021.101844
Jamtveit, B. and Wogelius, R.A., 1993. Fraser, D.G. Zonation Patterns of Skarn Garnets—Records of Hydrothermal System Evolution. Geology, 21(2): 113–116. https://doi.org/10.1130/0091-7613(1993)021%3C0113:ZPOSGR%3E2.3.CO;2
Kantak, D.J. and Corey, M., 1988. Metasomatic origin of spessartine_rich garnet in the soth mountiain batholiths, nova Scotia. The Canadian Mineralogist, 26(2): 318–334. Retrieved February 10, 2024 from https://pubs.geoscienceworld.org/canmin/article-abstract/26/2/315/12012/Metasomatic-origin-of-spessartine-rich-garnet-in?redirectedFrom=fulltext
Kawabata, H. and Takafuji, N., 2005. Origin of garnet crystals in calc-alkaline volcanic rocks from the Setouchi volcanic belt, Japan. Mineralogical Magazine, 69(6): 951–971. https://doi.org/10.1180/0026461056960301
Konrad-Schmolke, M., O'Brien, P.J., de Capitani, C. and Carswell, D.A., 2008. Garnet growth at high-and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos, 103(3–4): 309–332. https://doi.org/10.1016/j.lithos.2007.10.007
Krippner, A., Meinhold, G., Morton, A. and Eynatten, H.V., 2014. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sedimentary Geology, 306: 36–52. https://doi.org/10.1016/j.sedgeo.2014.03.004
Lackey, J.‌S., Romero, G.‌A., Bouvier, A.‌S. and Valley, J.‌W., 2012. Dynamic growth of garnet in granitic magmas. Geology, 40(2): 171–174. https://doi.org/10.1130/G32349.1
Lang, J.R., Lueck, B., Mortensen, J.K., Kelly Russell, J., Stanley, C.R. and Thompson, J.F., 1995. Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions in the Cordillera of British Columbia: Implications for arc magmatism. Geology, 23(5): 451–454. https://doi.org/10.1130/0091-7613(1995)023%3C0451:TJSUAS%3E2.3.CO;2
Lentz, D.‌R., 1998. Mineralized intrusion-related skarn systems. In: D.R. Lentz (Editor). Mineralogical Association of Canada, Ottawa, pp. 630-650. https://doi.org/10.1180/minmag.1999.063.3.05
Locock, A., 2008. An Excel spreadsheet to recast analyses of garnet end-member componets, and a synopsis of the crystal chemistry of natural silicate garnets. Computers and Geosciences, 34(12): 1769–1780. https://doi.org/10.1016/j.cageo.2007.12.013
London, D., 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184–187: 74–104. https://doi.org/10.1016/j.lithos.2013.10.025
L'Heureux, I. and Fowler, A.D., 1994. A nonlinear dynamical model of oscillatory zoning in plagioclase. American Mineralogist, 79(9–10): 885–891. Retrieved February 10, 2024 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/79/9-10/885/42921/A-nonlinear-dynamical-model-of-oscillatory-zoning
MacQueen, J.A. and Powell, D., 1977. Relationships between deformation and garnet growth in Moine (Precambrian) rocks of western Scotland. Geological Society of America Bulletin, 88(2): 235–240. https://doi.org/10.1130/0016-7606(1977)88%3C235:RBDAGG%3E2.0.CO;2
Middlemost, E.A., 1989. Iron Oxidation Ratios, Norms and the Classification of Volcanic Rocks. Chemical Geology, 77(1): 19–26. http://dx.doi.org/10.1016/0009-2541(89)90011-9
Mirnejad, H., Hasannejad, M., Miller, N., Hassanzadeh, J., Bocchio, R. and Modabberi, S., 2018. Origin and Evolution of Oscillatory Zoned Garnet from Kasva Skarn, Northeast Tafresh, Iran. The Canadian Mineralogist, 56(1): 15–37. https://doi.org/10.3749/canmin.1700039
Moeinzadeh, S.H., Rahimisadegh, H. and Moazzen, M., 2019. The Study of amphibolites in‏‏ Bahram Gor area (northwest of‎ Gol-e Gohar mine in Sirjan), with emphasis on mineral‎ paragenesis and whole rock chemical data. Petrological Journal, 9(4): 49–66. https://doi.org/10.22108/ijp.2018.106236.1052
Morimoto, N., 1989. Nomenclature of pyroxenes. Mineralogical Journal, 14(5): 198–‌221. https://doi.org/10.2465/minerj.14.198
Nachit, H., 1986. Contribution a L’etude analytique et experimental des biotites des granitoids Applications typologiques. Ph.D. Thesis, Université de Bretagne occidentale, Brest, France, 181 pp.
Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Nouri, F., Stern, R.J. and Azizi, H., 2022. A review of garnet deposits in western and southern Iran. International Geology Review, 64(1): 17–44. https://doi.org/10.1080/00206814.2020.1838335
Olimpio, J.C. and Anderson, D.E., 1978. The relationship between chemical and textural (optical) zoning in metamorphic garnets, South Morar, Scotland. American Mineralogist, 63(7–8): 677–689. Retrieved February 10, 2024 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/63/7-8/677/40936/The-relationship-between-chemical-and-textural
Park, C., Song, Y., Kang, I.M., Shim, J., Chung, D. and Park, C.S., 2017. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chemical Geology, 451: 135–153. https://doi.org/10.1016/j.chemgeo.2017.01.011
Patranabis-Deb, S., Schieber, J. and Basu, A., 2009. Almandine garnet phenocrysts in a~ 1 Ga rhyolitic tuff from central India. Geological Magazine, 146(1): 133–143. https://doi.org/10.1017/S0016756808005293
Peng, H.J., Zhang, C.Q., Mao, J.W., Santosh, M., Zhou, Y.M. and Hou, L., 2015. Garnets in porphyry–skarn systems: A LA–ICP–MS, fluid inclusion, and stable isotope study of garnets from the Hongniu–Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China. Journal of Asian Earth Sciences, 103: 229–251. https://doi.org/10.1016/j.jseaes.2014.10.020
Ramasamy, R., 1986. Titanium-bearing garnets from alkaline rocks of carbonatite complex of Tiruppattur, Tamil Nadu. Current Science, 55(20): 1026–1029. Retrieved February 10, 2024 from https://www.jstor.org/stable/24090977?typeAccessWorkflow=login
Ranjbar, S., Tabatabaei Manesh, S.M., Mackizadeh, M.A., Tabatabaei, S.H. and Parfenova, O.V., 2016. Geochemistry of major and rare earth elements in garnet of the Kal-e Kafi skarn, Anarak Area, Central Iran: Constraints on processes in a hydrothermal system. Geochemistry International, 54: 423–438. https://doi.org/10.1134/S0016702916050098
Roedder, E., 1979. Origin and significance of magmatic inclusions. Bulletin de Mineralogie, 102(5–6): 487–510. Retrieved February 10, 2024 from https://www.persee.fr/doc/bulmi_0180-9210_1979_act_102_5_7299
Rong, W., Zhang, S.B., Zheng, Y.F. and Gao, P., 2018. Mixing of felsic magmas in granite petrogenesis: geochemical records of zircon and garnet in peraluminous granitoids from South China. Journal of Geophysical Research: Solid Earth, 123(4): 2738-2769. https://doi.org/10.1002/2017JB014022
Ruan, C.T., Yu, X.Y., Su, S.G., Santosh, M. and Qin, L.J., 2022. Anatomy of Garnet from the Nanminghe Skarn Iron Deposit, China: Implications for Ore Genesis. Minerals, 12(7): 845. https://doi.org/10.3390/min12070845
Russell, J.K., Dipple, G.M., Lang, J.R., and Lueck, B., 1999. Major-element discrimination of titanium andradite from magmatic and hydrothermal environments; an example from the Canadian Cordillera. Europe Journal of Mineralogy, 11(6): 919–935. https://doi.org/10.1127/ejm/11/6/0919
Saha, A., Ray, J., Ganguly, S. and Chatterjee, N., 2011. Occurrence of melanite garnet in syenite and ijolite–melteigite rocks of Samchampi–Samteran alkaline complex, Mikir Hills, Northeastern India. Current Science, 101(1): 95–100. Retrieved February 10, 2024 from https://www.jstor.org/stable/24077869
Samadi, R., Miller, N.R., Mirnejad, H., Harris, C., Kawabata, H. and Shirdashtzadeh, N., 2014. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: A major, trace element, and oxygen isotope approach. Lithos, 208–209: 378–392. https://doi.org/10.1016/j.lithos.2014.08.023
Samadi, R., Valizadeh, M.V., Mirnejad, H., Baharifar, A.A. and Sheikh Zakariaee, S.J., 2015. Study of Fe, Mn, Mg and Ca Diffusion Effect on Garnet Growth (Dehnow Area, NW Mashhad, Iran). Scientific Quarterly Journal of Geosciences, 24(94): 37–46. https://doi.org/10.22071/gsj.2015.53659
Sargazi, M., Torabi, G. and Morishita, T., 2019. Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of the Jandaq, Central Iran): Implications for Eastern branch of Neo-Tethys subduction. Turkish Journal of Earth Sciences, 28(4): 558–588. https://doi.org/10.3906/yer-1807-45
Scheibner, B., Wörner, G., Civetta, L., Stosch, H.‌G., Simon, K. and Kronz, A., 2007. Rare earth element fractionation in magmatic Ca-rich garnets. Contribution to Mineralogy and Petrology, 154(3–4): 55–74. https://doi.org/10.1007/s00410-006-0179-z
Schingaro, E., Lacalamita, M., Mesto, E., Ventruti, G., Pedrazzi, G., Ottolini, L. and Scordari, F., 2016. Crystal chemistry and light elements analysis of Ti-rich garnets. American Mineralogist, 101(2): 371–384. https://doi.org/10.2138/am-2016-5439
Schmetzer, K., Gilg, H.A., Schüssler, U., Panjikar, J., Calligaro, T. and Périn, P., 2017. The Linkage Between Garnets Found in India at the Arikamedu Archaeological Site and Their Source at the Garibpet Deposit. The Journal of Gemmology, 35(7): 598–627. Retrieved April 30, 2024 from https://gem-a.com/wp-content/uploads/2023/11/volume35_issue7_2017.pdf
Schmitt, C., Tokuda, M., Yoshiasa, A., Nishiyama, T., 2019. Titanian andradite in the Nomo rodingite: Chemistry, crystallography, and reaction relations. Journal of Mineralogical and Petrological Sciences, 114(3): 111–121. https://doi.org/10.2465/jmps.180731
Smith, M.P. Henderson, P. Jeffries, T.E.R. Long, J. and Williams, C., 2004. The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK; constraints on processes in a dynamic hydrothermal system. Journal of Petrology, 45(3): 457–484. https://doi.org/10.1093/petrology/egg087
Tabatabaei manesh, S.‌M., Mahmoodabadi, L. and Mirlohi, A. S., 2013. Geochemistry of the Eocene volcanic rocks in the SW of Jandaq (NE of Isfahan province). Petrological Journal, 4(14): 79–92. Retrieved February 10, 2024 from https://ijp.ui.ac.ir/article_16136.html
Tadayon, M., Rossetti, F., Zattin, M., Nozaem, R., Calzolari, G., Madanipour, S. and Salvini, F., 2017. The post-Eocene evolution of the Doruneh Fault region (Central 149 Iran): The intraplate response to the reorganization of the Arabia-Eurasia collision zone. Tectonics, 36(12): 3038–3064. https://doi.org/10.1002/2017TC004595
Tappe, S., Jenner, G.A., Foley, S.F., Heaman, L., Besserer, D., Kjarsgaard, B.A. and Ryan, B., 2004. Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76(1–4): 491–518. https://doi.org/10.1016/j.lithos.2004.03.040
Tian, Z.D., Leng, C.B., Zhang, X.C., Zafar, T., Zhang, L.J., Hong, W. and Lai, C.K., 2019. Chemical composition, genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China. Ore Geology Reviews, 112: 103016. https://doi.org/10.1016/j.oregeorev.2019.103016
Torabi, G., 2010. Early Oligocene alkaline lamprophyric dikes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction. Island Arc, 19(2): 277–291. https://doi.org/10.1111/j.1440-1738.2009.00705.x
Tracy, R.J. and Frost, B.R., 1991. Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks, and iron formations. Reviews in Mineralogy and Geochemistry, 26(1): 207–289. Retrieved February 10, 2024 from https://pubs.geoscienceworld.org/msa/rimg/article/26/1/207/87305/Phase-equilibria-and-thermobarometry-of-calcareous
Tronnes, R.G., Edgar, A.D. and Arima, M., 1985. A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: implications to phlogopite chemistry. Geochimica et Cosmochimica Acta, 49(11): 2323–2329. https://doi.org/10.1016/0016-7037(85)90232-7
Turbeville, B.N., 1993. Petrology and petrogenesis of the Latera caldera, central Italy. Journal of Petrology, 34(1): 77–124. https://doi.org/10.1093/petrology/34.1.77
Ulrich, T., Kamber, B.S., Jugo, P.J. and Tinkham, D.K., 2009. Imaging element-distribution patterns in minerals by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). The Canadian Mineralogist, 47(5): 1001–1012. https://doi.org/10.3749/canmin.47.5.1001
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Whitney, D.L., Goergen, E.T., Ketchan, R.A. and Kunze, K., 2008. Formation of garnet polycrystals during metamorphic crystallization. Journal of Metamorphic Geology, 26(3): 36–383. https://doi.org/10.1111/j.1525-1314.2008.00763.x
Yang, P. and Pattison, D., 2006. Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos, 88(1–4): 233–253. https://doi.org/10.1016/j.lithos.2005.08.012
Yardley, B.W.D., Rochelle, C.A., Barnicoat, A.C. and Lioyd, G.E., 1991. Oscillatory zoning in metamorphic minerals, an indicator of infiltration metasomatism. Mineralogical Magazine, 55(380): 357–365. https://doi.org/10.1180/minmag.1991.055.380.06
Zhang, J.Y., Li, G., Tian, Y. and Schmitz, F., 2024. Inclusions and Spectral Characterization of Demantoid from Baluchistan, Pakistan. Crystals, 14(1): 84. https://doi.org/10.3390/cryst14010084
Zhang, Y., Shao, Y.‌J., Wu, C.‌D. and Chen, H.‌Y., 2017. LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu–S–Fe–Au deposit, eastern China. Ore Geology Reviews, 86: 426–439. https://doi.org/10.1016/j.oregeorev.2017.03.005
     
CAPTCHA Image