کانی‌ شناسی، زمین‌ شیمی و منشأ لاتریت های نیکل‌ دار شمال‌ غرب نورآباد (استان لرستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران

3 دکتری، موسسه گوهرشناسی کیپا دانشگاه خوارزمی، تهران، ایران

4 دانشجوی دکتری، گروه زمین شناسی، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران

چکیده

لاتریت­های نیکل ­دار منطقه نورآباد همراه مجموعه افیولیتی کرمانشاه در زون زاگرس مرتفع دیده می ­شوند. مجموعه افیولیتی در ناحیه مورد مطالعه شامل پریدوتیت ­های سرپانتینی‌شده، گابرو­های ایزوتروپ، کمی پلاژیوگرانیت، مجموعه دایک‌های صفحه ­ای، گدازه­ه ای بازالتی، آندزیت و رادیولاریت می‌باشد. پریدوتیت ­های این مجموعه افیولیتی شامل هارزبورژیت، لرزولیت و دونیت می ­باشند. فعالیت­ های زمین‌شاختی باعث خرد‌شدگی در این سنگ­ها شده ­است بگونه ­ای که باعث تسهیل فرآیند دگرسانی آن‌ها شده و زون­ های لاتریتی را ‌بوجود آورده است. دگرسانی سنگ‌های پریدوتیتی شامل دگرسانی ­های سرپانتینی، دولومیتی، هماتیتی و سیلیسی می­ باشد. زون لاتریتی ‌بصورت یک افق قرمز رنگ لایه ­ای و عدسی‌شکل بر روی سنگ‌های پریدوتیتی قرار دارد و توسط آهک های میوسن پوشیده شده­ است. بر اساس آنالیزهای XRD، در بخش لاتریتی کانی ­های دولومیت، کوارتز، گروه اسمکتیت و کانی ­های گروه سرپانتین وجود دارد. تعیین میزان pH محیط تشکیل لاتریت­ها بر اساس نسبت تغییرات  La/Yنشان‌دهنده حاکم بودن محیط تشکیل قلیایی برای این سنگ­ ها می‌باشد. بر طبق نمودارهای تفکیکی تشخیص سنگ منشاء، لاتریت ­های مورد مطالعه از نوع بوکسیت‌های کارستی با منشاء فوق‌بازی هستند.

کلیدواژه‌ها


Agard, P., Omrani, L., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94: 401-419.
Aleva, G.J.J., 1994. Laterites: concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC), Wageningen, Netherlands, 169pp.
Allahyari, K., Saccan, E., Pourmoafi, M., Beccaluva, L. and Masoudi, F., 2010. Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah Ophiolitic Complex (Zagros Belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti, 35 (2): 71-90. Retrieved October 11, 2023 from https://www.researchgate.net/publication/283838710_Petrology_of_mantle_peridotites_and_intrusive_mafic_rocks
Azami, S.H., Wolfgring, E., Wagreich, M. and Gharaie, M.H.M., 2018. In: Paleocene-EoceneCalcareous Nannofossil Biostratigraphy and Cyclostratigraphy from the Neo-Tethys, Pabdeh Formation of the ZagrosBasin (Iran). Stratigraphy and Timescales, 3, Academic Press, pp. 357-383. https://doi.org/10.1016/bs.sats.2018.08.006
 
Balasubramaniam, K.S., Surendra, M. and Ravi Kumar, T.V., 1987. Genesis of certain bauxite profiles from India. Chemical Geology, 60(1-4): 227–235. https://doi.org/10.1016/0009-2541(87)90128-8
Barnett, M., Jardine, P. M., Brooks, S. C. and Selim, H. M., 2000. Adsorption and transport of U (VI) in subsurface media. Soil Science Society of AmericaJournal, 64(3), 908-914. https://doi.org/10.2136/sssaj2000.643908x
 
Boschi, C., Dini, A., Dallai, L., Gianelli, G. and Ruggieri, G., 2009. Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluids infiltration into serpentinites at Malentrata (Tuscany, Italy). Chemical Geology, 265 (1-2), 209–226. https://doi.org/10.1016/j.chemgeo.2009.03.016
 
Brand, N.W., Butt, C.R.M. and Elias,M. 1998. Nickel Laterites: Classification and features. AGSO Journal of Australian Geology and Geophysics, 17 (4): 81- 88. Retrieved October 11, 2023 from https://d28rz98at9flks.cloudfront.net/81525/Jou1998_v17_n4_p081.pdf
 
Butt, C. R. M. and Cluzel, D., 2013. Nickel laterite ore deposits: weathered serpentinites. Elements, 9(2): 123-128. https://doi.org/10.2113/gselements.9.2.123
 
Cann, J.R. 1970. Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters, 10(1): 7-11. https://doi.org/10.1016/0012-821X(70)90058-0
 
Coppin, F., Berger, G., Castet, S. and Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology, 182(1): 57-68. https://doi.org/10.1016/S0009-2541(01)00283-2
 
Dixon, J.B., 1989. Kaolin and serpentine group minerals. In: Dixon, J.B., Weed, S.B. (Eds.), Minerals in Soil Environments. Soil Science Society of America, Madison, 467–525.
Gaudin, A., Decarreau, A., Noack, Y. andGrauby, O., 2005. Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52(2): 231–241. https://doi.org/10.1080/08120090500139406
 
Ghazi, A.M. and Hassanipak, A.A., 1999. Geochemistry of subalkaline and alkaline extrusives from the Kermanshah ophiolite, Zagros Suture Zone, western Iran: implications on Tethyan plate tectonics. Journal of Asian Earth Sciences, 17(3): 319-332. https://doi.org/10.1016/S0743-9547(98)00070-1
 
Gleeson, S.A., Butt, C.R. and Wlias, M., 2003. Nickel laterites: a review. SEG Newsletter, Society of Economic Geology, 54: 1-18. https://doi.org/10.5382/SEGnews.2003-54.fea
 
Golightly, J.P., 1981. Nickeliferous laterite deposits. In B.J. Skinner (editor), Economic Geology 75th Anniversary Volume, Society of Economic Geologists, pp 710-735. https://doi.org/10.5382/AV75
 
Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L., 1984. The North American shale composite: Its composition, major and trace element characteristics. GeochimicaCosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
 
Harper, G.D. 1995. Pumpellyosite and prehnitite associated with epidosite in the Josephine ophiolite-Ca metasomatism during upwelling of hydrothermal fluids at a spreading axis. In: Schiffman, P. &Day, H. (eds) Low Grade Metamorphism of Mafic Rocks. Geological Society of America, Special Papers, 296: 101-122. https://doi.org/10.1130/SPE296-p101
 
Hudson, E. A., Terminello, L. J., Viani, B. E., Denecke, M., Reich, T. and Allen, P. G., 1999. The structure of U6+ sorption complexes on vermiculite andhydrobiotite. Clays and Clay Minerals, 47: 439-457. https://doi.org/10.1346/CCMN.1999.0470406
 
Humphris, S.E. and Thompson, G., 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochimica et Cosmochimica Acta, 42(1): 127-136. https://doi.org/10.1016/0016-7037(78)90222-3
 
Kataba-Pendias, A., 2010. Trace elements in soils and plants. Boca Raton, Florida: CRC Press.Boca Raton, Florida, 578pp. https://doi.org/10.1201/b10158
 
Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralogist, 68: 277-279. http://www.minsocam.org/ammin/AM68/AM68_277.pdf
 
Kiani, M., 2011. Geochemistry, economic geology and petrogenesis of the ophiolite complex in the Alashtar-Kermanshah axis. MSc thesis, Islamic Azad University, Khorramabad Branch, Iran, 195p. (in Persian with English abstract)
Koeppenkastrop, D. and De Carlo, E. H., 1993. Uptake of rare earth elements from solution by metal oxides. Environmental and Science Technology, 27: 1796-1802. https://doi.org/10.1021/es00046a006
 
König, U., 2021. Nickel Laterites - Mineralogical Monitoring for Grade Definition and Process Optimization. Minerals, 11 (11): 1-16. https://doi.org/10.3390/min11111178
 
Kühnel, R.A., Roorda, H.J. and Steensma, J.J., 1975. The crystallinity of minerals- a new variable in pedogenetic processes: a study of goethite and associated silicates in laterites. Clays and Clay minerals, 23: 349-354. https://doi.org/10.1346/CCMN.1975.0230503
 
LambivDzemua, G., Gleeson, S.A., Buckovic, W., Ayongaba, B.A., Simo, E., Omgba, C. and Mikolebeh, P.C., 2009. A Preliminary Description of the Nkamouna Cobalt– Manganese–Nickel Laterite Deposit, Southeast Cameroon. In S.R. Titley (Editor), Supergene Environments, Processes, and Products. Special Publication of the Society of Economic Geologists, pp 33–44. https://doi.org/10.5382/SP.14
Maksimovic, Z. and Panto, G.Y., 1991. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yogoslavia and Greece. Geoderma, 51(1-4): 93-109. https://doi.org/10.1016/0016-7061(91)90067-4
Marques, J. J., Schulze, D. G., Curi, N. andMertzman, S. A., 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma, 121(1-2): 31-43. https://doi.org/10.1016/j.geoderma.2003.10.003
Meyer, F.M., Happel, U., Hausberg, J. and Wiechowski, A., 2002. The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela.Ore Geology Reviews, 20(1-2): 27-54. https://doi.org/10.1016/S0169-1368(02)00037-9
Mottl, M.J., 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems atmid-ocean ridges. Geological Society of America Bulletin, 94(2): 161-180. https://doi.org/10.1130/0016-7606(1983)94<161:MAHSAT>2.0.CO;2
Mutakyahwa, M.K.D., Ikingura, J.R. and Mruma,A.H., 2003. Geology and geochemistry ofbauxite deposits in Lushoto District, UsambaraMountains, Tanzania. Journal of African EarthSciences, 36(4): 357–369. https://doi.org/10.1016/S0899-5362(03)00042-3
Nahon, D.B., Herbillon, A.J. and Beauvais, A., 1989. The Epigenetic replacement of kaolinite by lithiophorite in a manganese-laterite profile, Brazil. Geoderma, 44(4): 247–259. https://doi.org/10.1016/0016-7061(89)90034-7
Ohta, T. and Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3-4), 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
Puchelt, H. and Emmermann, R., 1976. Bearing of rare earth patterns of appetites from igneous and metamorphic rocks. Earth and Planetary Science Letters, 31(2):279-286. https://doi.org/10.1016/0012-821X(76)90220-X
Rajabzadeh, M.A. and Hedayati, M., 2019. The role of pH, organic matter and weathering intensity on geochemical and mineralogical characteristics of Ni-bearing laterites in the Bavanat region, Fars province. Journal of Economic Geology, 12(3): 433-446. (in Persian with English abstract) https://doi.org/10.22067/econg.v12i3.79515
Rasti, S., Rajabzadeh, M.A., Monvoisin, G. and Quantin, C., 2022. Investigation of the Ni-rich regolith in Bavanat region, Fars province, Iran: Constraints from mineralogy, geochemistry and Ni isotopes. Journal of Geochemical Exploration, 242: 1-12. https://doi.org/10.1016/j.gexplo.2022.107086
Ridley, J., 2013. Ore Deposit Geology. Cambridge: Cambridge University Press, 398pp. https://doi.org/10.1017/CBO9781139135528
Rollinson, H.R., 1993. Using geochemical data: Evaluation, Presentation, Interpretation. Longman, 352pp. https://doi.org/10.4324/9781315845548
 
Sagapoa, C. V., Imai, A., Ogata, T., Yonezu, K. and Watanabe, K., 2011. Laterization process of peridotites in Siruka, Choiseul, Solomon Islands.Journal of Applied Geology, 3(2): 76-92. https://doi.org/10.22146/jag.7184
 
Schellmann, W., 1986. A new definition of laterite. In: Lateritisation Processes, IGCP-127. Geological Survey of India, Memoirs, 120: 1-7. Retrieved October 11, 2023 from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7382291
 
Schroll, E. and Sauer, D., 1968. BeitragzurGeochemie von Titan, Chrom, Nickel, Cobalt, Vanadium und Molibdan in bauxitischenGesteinen und das Problem der stofflichenHerkunft des Aluminiums. Travaux de l’ICSOBA, Zagreb, 5: 83–96.
Schwertmann, U. and Pfab, G., 1996. Structural vanadium and chromium in lateritic iron oxides: genetic implications. Geochim et Cosmochim Acta, 60(21): 4279-4283. https://doi.org/10.1016/S0016-7037(96)00259-1
Selvaraj, K. and Chen, C.T.A., 2006. Moderatechemical weathering of subtropical Taiwan, constraints from solid-phase geochemistry ofsediments and sedimentary rocks. The Journal of Geology, 114(1): 101–116. https://doi.org/10.1086/498102
Seyfried, W.E. JR., 1987. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annual Review of Earth and Planetary Sciences, 15: 317-335. https://doi.org/10.1146/annurev.ea.15.050187.001533
 
Singh, B. and Gilkes, R. J., 1992. Properties and distribution of iron oxides and their associations with minor elements in the soil of southwestern Australia.EuropeanJournal of Soil Sciences, 43(1): 77-98. https://doi.org/10.1111/j.1365-2389.1992.tb00121.x
 
Stöcklin, G., 1968. Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin, 52(7): 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalts: implication for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.). Magmatism in Ocean Basins.Geological Society of London Special Publication, 42: 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Taboada, T., Cortizas, A. M., Garcia, C. and Garcia-Rodeja, E., 2006. U and Th in weathering and pedogenetic profiles developed on granitic rocks from NWSpain. Science of the Total Environmental, 356(1-3): 192-206. https://doi.org/10.1016/j.scitotenv.2005.03.030
 
Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312pp.
Tupaz, C.A.J., Watanabe, Y., Sanematsu, K. andEchigo, T., 2020. Mineralogy and geochemistry of the Berong Ni-Co laterite deposit, Palawan, Philippines. Ore Geology Reviews, 125: 103686. https://doi.org/10.1016/j.oregeorev.2020.103686
 
Valeton,I., Biermann, M., Reche, R. and Rosenberg, F., 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parentrocks. Ore Geology Reviews, 2(4): 359-404. https://doi.org/10.1016/0169-1368(87)90011-4
 
Van der Ent, A., Baker, A.J.M., van Balgooy, M.M.J. and Tjoa, A., 2013. Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128: 72–79. https://doi.org/10.1016/j.gexplo.2013.01.009
 
CAPTCHA Image