مطالعه زمین‌ شیمی، ایزوتوپ های Sr، Nd و جایگاه زمین‌ ساختی توده های نفوذی در محدوده اکتشافی بالازرد، جنوب‌ غرب نهبندان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زمین‌شناسی، دانشکده علوم، مجتمع آموزش عالی گناباد، گناباد، ایران

2 استاد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار، گروه علوم زمین‌‌، دانشگاه آویرو، آویرو، پرتغال

4 استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، مجتمع آموزش عالی گناباد، گناباد، ایران

چکیده

محدوده اکتشافی بالازرد در 120 کیلومتری جنوب­ غرب نهبندان و در بخش مرکزی بلوک لوت واقع شده ­است. این محدوده پوشیده از سنگ ­های آتشفشانی با سن ائوسن بوده که توده ­های نفوذی بصورت استوک و دایک در آن نفوذ کرده ­اند. بافت غالب این واحدها پورفیری با فنوکریست­ هایی در اندازه میلیمتر شامل کانی­ های پلاژیوکلاز، کلینوپیروکسن و کانی­ های پلاژیوکلاز،  کوارتز و کانی ­های تیره در زمینه هستند. براساس رده­بندی شیمیایی، واحدهای نفوذی منطقه شامل مونزوگابرو، گابرودیوریت و مونزودیوریت می ­باشند. این توده ­های نفوذی، کالک­آلکالن پتاسیم ­­بالا و با ماهیت متاآلومینوس می ­باشند. غنی‌شدگی LREE نسبت به HREE و غنی ­شدگی عناصر LILE نسبت به HFSE و همچنین بی ­هنجاری P، Nb و Ti شواهد مهمی است که نشان می ­دهد توده ­های نفوذی بالازرد در کمربند ماگمایی زون فرورانش تشکیل شده ­اند. عنصر Eu ناهنجاری منفی نشان می­ دهد و مقدار Eu/Eu* از 76/0 تا 96/0 در تغییر است. ناهنجاری منفی Eu احتمالاً بعلت حضور کانی پلاژیوکلاز در سنگ منشاء ماگما می ­باشد. مقدار 87Sr/86Sr   اولیه بین 706/0 تا 707/0 و مقدار εNdi بین 9/1- و 2/3- است که نشان­ دهنده آغشتگی ماگما با پوسته قاره ­ای می ­باشد. مطالعات ژئوشیمیایی این پژوهش نشان می ­دهد که توده­های نفوذی بالازرد هم ­خاستگاه بوده و از ذوب پوسته اقیانوسی در زون فرورانش در حاشیه فعال قاره منشاء گرفته و در حین جایگیری در سطوح کم ­عمق با پوسته قاره ­ای آغشتگی پیدا کرده ­اند.


کلیدواژه‌ها


Abdi, M. and Karimpour, M.H., 2013. Petrochemical characteristics and timing of Middle Eocene granitic magmatism in Kooh-Shah, Lut Block, Eastern Iran. Acta Geologica Sinica, 87(4) 1032–1044. https://doi.org/10.1111/1755-6724.12108
Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, (in Persian) 606p.
Akrami, A. and Naderi Mighan, N., 2005. Geological map of Dehsalm, Scale 1:100,000. Geological Surver of Iran.
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J. and Homam, S.M., 2011. Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences 41(3): 283–296. https://doi.org/10.1016/j.jseaes.2011.02.014
Arjmandzadeh, R. and Santos, J.F., 2014. Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. International Journal of Earth Sciences, 103(1): 123–140. https://doi.org/10.1007/s00531-013-0959-4
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: P. Henderson (Editor), Rare earth element geochemistry. Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Chappell, B.W. and White, A.J.R., 1992. I- and S- type granites in the Lachlan Fold Belt.           Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1-2): 1-26. Published online by Cambridge University Press:  03 November 2011. https://doi.org/10.1017/S0263593300007720
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite type: 25 years later. Australian Journal of Earth Science, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x         
Esmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961–980. https://doi.org/10.1016/j.jseaes.2004.09.003
 Faure, G., Mensing, T.M., 2005. Isotopes: Principles and applications. John Wiley and Sons, New Jersey, 928 pp.
Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer, New York, 390 pp.
Griffis, A.R., Magries, H., Abedian, N. and Behrozi, A., 1991. Explanatory text of Dehsalm (Chahvak). Geological Quadrangle Map 1:250,000. No. K6, Geological Surver of Iran.
Ishihara, S., 1977. The Magnetite-series and Ilmenite-series Granitic Rocks. Mining Geology, 27(145): 293–305. https://doi.org/10.11456/shigenchishitsu1951.27.293
Ishihara, S., 1981. The Granitoid Series and Mineralization. In: B.J. Skinner (Editor), Economic Geology 75th Anniversary Issue. Ecomonic Geology Publishing Company, New Haven, Connecticut, pp. 458–484.
Jacobsen, S. B. and Wasserburg, G. J., 1980. Sm–Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139–155. https://doi.org/10.1016/0012-821X(80)90125-9
Karimpour, M.H., Malekzadeh Shafaroudi, A., Lang Farmer, G. and Stern, C.R., 2012. U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran. Journal of Economic Geology, 4(1): 1–27. (in Persian with English abstract). https://doi.org/10.22067/econg.v4i1.13391
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews, 65(2): 522–544.
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429.
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth–Science Reviews, 37(3–4): 215–224.
Miri Beydokhti, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F. and Klotzli, U., 2015. U–Pb zircon geochronology, Sr–Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 111: 192–205.
Miri Beydokhti R., Karimpour M.H., Mazaheri S.A, 2014. Studies of remote sensing, geology, alteration, mineralization and geochemistry of Balazard copper-gold prospecting area, west of Nehbandan. Iranian Journal of Crystallography and Mineralogy, 22(3): 459-470. (in Persian with English abstract) Retrieved March 15, 2021 from
Moradi, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2012a. Sr-Nd isotopic charecteristics, U-Pb zircon geochronology, and petrogenesis of Najmabad granodiorite batholith, eastern Iran. Journal of Economic Geology, 3(2): 127-145. (in Persian with English abstract)
Nagudi, N., Koberl, Ch. and Kurat, G., 2003. Petrography and geochemistry of the Singo granite, Uganda and implications for origin. Journal of African Earth Sciences, 36(1-2): 73-87.
Najafi, A., Karimpour, M.H., Ghaderi, M., Stern, Ch. and Farmer, L., 2014. U-Pb zircon geochronology, Rb-Sr and Sm-Nd isotope geochemistry, and petrogenesis of granitoid rocks at Kaje prospecting area, northwest Ferdows: Evidence for upper Cretaceous magmatism in Lut block. Journal of Economic Geology, 6(1): 107-135 (in Persian with English abstract).
Nakhaei, M., Mazaheri, S.A., Karimpour,M.H., Stern, C.R., Zarrinkoub, M.H., Mohammadi, S.S. and Heydarian shahri, M.R. 2015. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran. Arabian Journal of Geosciences, 8(10): 8481-8495
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental Basalts and Mantle Xenoliths. Shiva Publications, Nantwich, Cheshire, pp. 230–249. Retrieved June 4, 2017 from
Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983.
Pearce, A. J. and Parkinson, I. J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society, 76: 373-403.
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63–81.
Reichew, M. K., Saunders, A. D., White, R. V., Medvedev, A. Ya. and Al M-Ukhamedov, A. I., 2005. Geochemistry and petrogenesis of basalts from the west Siberian Basin: An extension of the Permo-Triassic Siberian Traps, Russia. Lithos 79(3–4): 425-452.
Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London, 384pp.
 
Samiee, S., Karimpour, M.H., Ghaderi, M., Haidarian Shahri, M.R., Kloetzli, U. and Santos, J.F., 2016. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. Journal of Asian Earth Sciences, 115: 170-182.
Saunders, A. D., Storey, M., Kent, R. W. and Norry, M. J., 1992. Consequences of plume-lithosphere interactions. In: Magmatism and the causes of continental break-up. Geological Society London Special Publication, 68: 41-60. https://doi.org/10.1144/GSL.SP.1992.068.01.04
Schandl, E. S. and Gorton, M. P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629–642.
Shand, S.J., 1969. Eruptive rocks: their genesis, composition, classification and their relation to ore deposits. John Wiley and Sons, New York, 488pp.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Publications, 42: 313-345.
Whalen, J. B., Currie, K. L. and Chappell, B. W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 277-279.
Wilson, M., 1989. Igneous petrogenesis: A global tectonic approach. Unwin Hymen, London, 466pp.                 https://doi.org/10.1007/978-1-4020-6788-4
CAPTCHA Image