شیمی مگنتیت در کانسار مس- طلای پورفیری دالی، بخش مرکزی کمان ماگمایی ارومیه– دختر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشجوی کارشناسی ارشد، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دکتری، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

5 دانشیار، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

کانسار مس- طلای پورفیری دالی در بخش مرکزی کمربند ماگمایی ارومیه- دختر قرار دارد. این کانسار در اثر نفوذ توده ­هایی با ترکیب غالب دیوریت و کوارتز دیوریت به سن میوسن در واحدهای آتشفشانی با ترکیب آندزیت تا آندزیت بازالت پورفیری ائوسن تشکیل‌شده است. دگرسانی ­های اصلی در این منطقه شامل دگرسانی پتاسیک­، پروپلیتیک و به ­طور محلی فیلیک است. در این پژوهش شیمی کانه مگنتیت در زون دگرسانی پتاسیک مورد بررسی قرار‌گرفته است. نتایج تجزیه ریزکاونده الکترونی از بلورهای مگنتیت نشان‌دهنده مقادیر بالای عناصر Ti، Al، V،  Mg و Mn در این سامانه پورفیری غنی از طلا‌ست. بر اساس نتایج حاصل از این آنالیز، خاستگاه مگنتیت را می­ توان گرمابی در نظر‌گرفت. شواهدی همانند مگنتیت ­های مارتیتی‌شده و رخداد اکسولوشن تیغه ­های ایلمنیت در مگنتیت، نشان‌دهنده تبلور مگنتیت­ های کانسار دالی طی شرایط فوگاسیته اکسیژن بالا‌ست. همچنین، بر اساس نمودار Al + Mn در مقابل Ti + V، مگنتیت­ های متبلور شده طی دگرسانی پتاسیک از روند افت دمایی پیروی می­ کنند که از عوامل مهم در ارتقای کانه ­زایی سولفیدی در خلال تکامل سامانه گرمابی این کانسار محسوب می ­شود. نتایج نشان‌داد، در مقایسه با سامانه ­های مس پورفیری درآلو و کدر مقادیر Ni، Mn، Cr وCo ، دارای بیشترین فراوانی در مگنتیت­ های کانسار پورفیری مس- طلای دالی هستند که این ویژگی می ­تواند به عنوان کلیدی اکتشافی برای شناسایی ذخایر مس پورفیری غنی از طلا قلمداد شود. 

کلیدواژه‌ها


Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9): 1064–1095. https://doi.org/10.2475/09.2007.02
Asadi, S., 2018.Triggers for the generation of post–collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd– Hf–O) data. Gondwana Research, 64: 97–121. https://doi.org/10.1016/j.gr.2018.06.008  
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138: 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001
Ayati, F., Yavuz, F., Asadi, H., Richards, J.P. and Jourdane, F., 2013. Petrology and geochemistry of calc–alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Reviews, 55(2): 158–184. https://doi.org/10.1080/00206814.2012.689640
Balan, E., De Villiers, J.P.R., Eeckhout, S.G., Glatzel, P., Toplis, M.J., Fritsch, E., Allard, T., Galoisy, L. and Calas, G., 2006. The oxidation state of vanadium in titanomagnetite from layered basic intrusions. American Mineralogist, 91(5–6): 953–956. https://doi.org/10.2138/am.2006.2192
Canil, D., Grondahl, C., Lacourse, T. and Pisiak, L.K., 2016. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada. Ore Geology Reviews, 72(Part 1): 1116–1128. https://doi.org/10.1016/j.oregeorev.2015.10.007
Cao, M., Qin, K., Li, G., Jin, L., Evans, N.J. and Yang, X., 2014. Baogutu: an example of reduced porphyry Cu deposit in western Junggar. Ore Geology Review, 56: 159–180. https://doi.org/10.1016/j.oregeorev.2013.08.014
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163: 70–87. https://doi.org/10.1016/j.lithos.2013.01.006
Darbani, M.H., Abedini, A., Aliyari, F. and Kalagari, A., 2020. Magnetie mineral chemistry and characteristics of fluid shortcuts in Kuh-e-Baba iron deposit, south of Hashtrood, northwest of Iran. Iranian Journal of Crystallography and Mineralogy, 27(4): 755–766. (in Persian) Retrieved October 16, 2019 from https://ijcm.ir/article-1-1361-en.html
Dare, S.A.S., Barnes, S.J., Beaudoin, G., M´eric, J., Boutroy, E. and Potvin-Doucet, C., 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7): 785–796.  https://doi.org/10.1007/s00126-014-0529-0
Deditius, A., Reich, M., Simon, A.C., Suvorova, A., Knipping, J., Roberts, M.P., Rubanov, S., Dodd, A. and Saunders, M., 2018. Nanogeochemistry of hydrothermal magnetite. Contributions to Mineralogy and Petrology, 173(46): 1–20. https://doi.org/10.1007/s00410-018-1474-1
Dupuis, C. and Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineraleum Deposita, 46(4): 319–335. https://doi.org/10.1007/s00126-011-0334-y
Guo, J.H., Leng, C.B., Zhang, X.C., Wei, Z.T., Wei, T.C., Tian, Z.D., Tian, F. and Lai, C.K., 2020. Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan, SW China. Ore Geology Reviews, 116: 103245. https://doi.org/10.1016/j.oregeorev.2019.103245
Haggerty, S.E., 1991. Oxide mineralogy of the upper mantle. In: D.H. Lindsley (Editor), Oxide minerals: petrologic and magnetic significance.  De Gruyter, pp. 355–416. https://doi.org/10.1515/9781501508684-013
Hasanzadeh, F., Shamsaddini, M., Rahimipour, G.R., 2021. Comparison of zonality indices in position determination of porphyry copper ore in Daralu, south of Kerman province. Journal of Mining Engineering 16(52): 51–62. https://doi.org/10.22034/IJME.2021.122094.1811
Heydari, M., Zarasvandi, A, Rezaei, M., Asadi, S., 2018. Reconstructing physicochemical attributes using chemistry of biotite and chlorite in the Keder porphyry copper deposit, Kerman Cenozoic magmatic arc. Iranian Journal of Geology 47(12): 63–85. Retrieved October 20, 2018 from http://geology.saminatech.ir/Article/9614
Hou, Z., Zhang, H., Pan, X. and Yang, Z., 2011. Porphyry Cu (–Mo–Au) Deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1–2): 21–45. https://doi.org/10.1016/j.oregeorev.2010.09.002
Hu, H., Lentz, D., Li, J.W., McCarron, T., Zhao, X.F. and Hall, D., 2015. Reequilibration processes in magnetite from iron skarn deposits. Economic Geology, 110 (1): 1–8. https://doi.org/10.2113/econgeo.110.1.1
Huang, X.W., Zhou, M.-F., Qiu, Y.Z. and Qi, L., 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geology Reviews, 65(Part 4): 884–899. https://doi.org/10.1016/j.oregeorev.2014.09.010
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wӓlle, M., Heinrich, C.A., Holtz, F. and Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochim. Acta, 171: 15–38. https://doi.org/10.1016/j.gca.2015.08.010
Liu, Y., Fan, Y., Zhou, T., Yan, L., Fu, B., Wang., F. and Wang, G., 2022. Trace element evolution of magnetite in iron oxide-apatite deposits: Case study of Daling deposit, Eastern China. Ore Geology Reviews. 144: 104842. https://doi.org/10.1016/j.oregeorev.2022.104842
Mollo, S., Putirka, K., Iezzi. G. and Scarlato, P., 2013. The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contribution to Mineralogy and Petrology, 165: 457–475. https://doi.org/10.1007/s00410-012-0817-6
Monsef, R., 2011. Geochemistry, petrogenesis and tectonomagmatic aspects of Neogene volcanic and sub-volcanic rocks in west of Salafchegan to north of Deligan (Central Iran). Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 270 pp.
Mysen, B.O., 2012. High-pressure and high-temperature titanium solution mechanisms in silicate-saturated aqueous fluids and hydrous silicate melts. American Mineralogist, 97(7): 1241–1251. https://doi.org/10.2138/am.2012.4084
Nadoll, P., Angerer, T., Mauk, J.L., French, D. and Walshe, J., 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61: 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013
Nadoll, P., Mauk, J.L., Leveille, R.A. and Koenig, A.E., 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, 50(1): 493–515. https://doi.org/10.1007/s00126-014-0539-y    
Nadri, R., Mohajjel. M. and Behrodi, A., 2010. Bidhend strike-slip fault (south Qom). Scientific Quarterly Journal of Geosciences, 19(74): 177–184 (in Persian) https://doi.org/10.22071/gsj.2010.57355
Parvaresh Darbandi, M., Malekzadeh Shafaroudi, A., Azimzadeh, A.‌M., Karimpour, M.H. and Klötzli, U. 2022. Textures and chemical compositions of the Narm iron oxide-apatite deposit in Kuh-e-Sarhangi District (Central Iran): Insights into the magmatic-hydrothermal mineralization. Ore Geology Reviews, 141: 104631. https://doi.org/10.1016/j.oregeorev.2021.104631
Pourkaseb, H., Zarasvandi, A., Saed, M. and Davoudian Dehkordy, A.R., 2017. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using amphibole and plagioclas mineral chemistry. Journal of Economic Geology, 9(1): 73–92 (in Persian with English abstract) https://doi.org/10.22067/ECONG.V9I1.51704
Rezaei, M., 2017. Effective parameters in mineralization potential of economic and subeconomic porphyry copper deposits in Urumieh- Dokhtar magmatic zone: using geochemical and fluid inclusion studies. Ph.D. Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 204 pp.
Rezaei, M. and Zarasvandi, A., 2020. Titanium-in-biotite thermometry in porphyry copper systems: Challenges to application of the thermometer. Resource Geology, 70: 157–168. https://doi.org/10.1111/rge.12227
Rezaei, M. and Zarasvandi, A., 2022. Combined Feldspar-Destructive Processes and Hypogene Sulfide Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore Discovering. Iranian Journal of Science and Technology, Transactions A: Science, 46(5): 1413–1424. https://doi.org/10.1007/s40995-022-01350-1
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70: 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
Richards, J.P., López, G.P., Zhu, J.J., Creaser, R.A., Locock, A.J. and Mumin, A.H., 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu-Au deposits in Northern Chile. Economic Geology, 112(2): 295–318. https://doi.org/10.2113/econgeo.112.2.295
Robert, A. and Anderson, A., 2016. Experimental calibration of a new oxybarometer for silicic magmas based on the partitioning of vanadium between magnetite and silicate melt. EGU General Assembly, 18: 12-29. Retrieved February 14, 2016 from https://ui.adsabs.harvard.edu/abs/2016EGUGA..1812829A/abstract
Rusk, B., Oliver, N., Brown, A., Lilly, R. and Jungmann, D., 2009. Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. 10th Biennial SGA Meeting, Townsville, Australia.
Saremi, F., 2014. Hydrothermal alteration mapping using combination of the ASTER data and spectroscopic minerals in the Dalli porphyry Cu-Au deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 142 pp. (in Persian with English abstract)
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, Southeastern Iran. Mineraleum Deposita, 44(3): 265–283. https://doi.org/10.1007/s00126-008-0216-0
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41.  https://doi.org/10.2113/gsecongeo.105.1.3
Simon, A.C., Candela, P.A., Piccoli, P.M., Mengason, M. and Englander, L., 2008. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. American Mineralogist, 93(8–9): 1437–1448. https://doi.org/10.2138/am.2008.2812
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E. and Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(Part 1): 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Sun, W., Yuan, F., Jowitt, S.M., Zhou, T., Liu, G., Li, X., Wang, F. and Troll, V.R., 2019. In situ LA–ICP–MS trace element analyses of magnetite: genetic implications for the Zhonggu orefield, Ningwu volcanic basin, Anhui Province, China. Mineralium Deposita, 54(1): 1243–1264. https://doi.org/10.1007/s00126-019-00872-w
Tian, J., Zhang, Y., Gong, L., Francisco, D.G. and Berador, A., 2021. Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines). Ore Geology Reviews, 133: 104084. https://doi.org/10.1016/j.oregeorev.2021.104084
Wen, G., Li, J.W., Hofstra, A.H., Koenig, A.E., Lowers, H.A. and Adams, D., 2017. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta, 213: 255–270. https://doi.org/10.1016/j.gca.2017.06.043
Whitney, D. L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Zaki, M.H., 2007. Temperature dependence of dielectric properties for copper doped magnetite. Journal of Alloys and Compounds, 439(1–2): 1–8. https://doi.org/10.1016/j.jallcom.2006.08.084
Zarasvandi, A., Asadi, F., Pourkaseb, H., Ahmadnejad, F. and Zamanian, H. 2016. Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies. Journal of Economic Geology, 7(2): 277–306. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V7I2.38447
Zarasvandi, A., Heidari, M., Raith, J.G., Rezaei, M. and Saki, A., 2019a. Geochemical characteristics of collisional and pre-collisional porphyry copper systems in Kerman Cenozoic Magmatic Arc, Iran: Using plagioclase, biotite and amphibole chemistry. Lithos, 326–327: 279–297. https://doi.org/10.1016/j.lithos.2018.12.029
Zarasvandi, A., Heidari, M., Rezaei, M., Raith, J.G., Asadi, S., Saki, A. and Azimzadeh, A., 2019b. Magnetite Chemistry in the Porphyry Copper Systems of Kerman Cenozoic Magmatic Arc, Kerman, Iran. Iranian Journal of Science and Technology, Transactions A: Science, 43: 839–862. https://doi.org/10.1007/s40995-019-00677-6
Zarasvandi, A., Liaght, S. and Zentilli, M., 2005. Porphyry copper deposits of the Urumieh-Dokhtar magmatic arc, Iran, Super Porphyry Copper and Gold deposits: A global perspective. PGC publishing, Adelaide, 2: 441–452. Retrieved November 10, 2006 from https://www.geokniga.org/books/5049
Zarasvandi, A., Rezaei, M., Raith, J.G., Asadi, S. and Lentz, D.R., 2019c. Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility. Ore Geology Reviews, 105: 183–200. https://doi.org/10.1016/j.oregeorev.2018.12.027
Zarasvandi, A., Rezaei, M., Raith, J.G. and Lentz, D.R., 2022. Why are there no Cu-porphyry deposits in Jurassic Sanandaj-Sirjan zone intrusions of Iran? International Geology Review, 64(4): 530–544. https://doi.org/10.1080/00206814.2020.1864792
Zarasvandi, A., Rezaei, M., Raith, J.G., Lentz, D.R., Azimzadeh, A.M. and Pourkaseb, H., 2015a. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. Journal of Asian Earth Sciences, 111: 175–191. https://doi.org/10.1016/j.jseaes.2015.07.029
Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M. and Lentz, D.R., 2018. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochimica et Cosmochimica Acta, 223: 36–59. https://doi.org/10.1016/j.gca.2017.11.012
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M. and Pourkaseb, H., 2015b. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh-Dokhtar Magmatic Arc (UDMB), Iran. Ore Geology Reviews, 70: 407–423. https://doi.org/10.1016/j.oregeorev.2015.01.010
Zhao, L., Chen, H., Zhang, L., Li, D., Zhang, W., Wang, C., Yang, J. and Yan, X., 2018. Magnetite geochemistry of the Heijianshan Fe–Cu (–Au) deposit in Eastern Tianshan: Metallogenic implications for submarine volcanic-hosted Fe–Cu deposits in NW China. Ore Geology Reviews, 100: 422–440. https://doi.org/10.1016/j.oregeorev.2016.07.022
 
CAPTCHA Image