پتروژنز پگماتیت‌ های کرندوم‌ دار خاکو در حاشیه مجموعه گرانیتی الوند و مقایسه آن با کانسارهای مهم یاقوت و سافایر در جهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

3 استادیار، گروه زمین‌شناسی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار، گروه زمین‌شناسی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

کرندوم‌های آبی رنگ (سافایر) در منطقه خاکو در مجموعه آذرین الوند در پگماتیت‌های سینیتی یافت می‌شوند. از دیدگاه سنگ‌نگاری، زمینه اصلی سنگ از فلدسپار و مقادیر اندکی کوارتز تشکیل‌شده است که بلورهای کرندوم به رنگ آبی شفاف تا نیمه شفاف به طول 1 تا 6 سانتی‌متر را که با غلافی از میکا با ترکیب مسکویتی تا فنژیتی پوشیده شده است، در بر‌می‌گیرد. به نظر می‌رسد، هسته بلورهای کرندوم در مرحله ماگمایی در تعادل با میکا+ آلومینوسیلیکات+ فلدسپار± پرتیت متبلور‌شده است و در مرحله متاسوماتیک بعدی، بلورهای کرندوم از واکنش پلاژیوکلاز و میکا رشد یافته‌اند. ترکیب شیمیایی کانی‌های اصلی در سنگ‌های پگماتیتی بیانگر منشأ ماگمایی این سنگ‌هاست که طی فرایند تفریق تشکیل شده‌اند. در ادامه، چرخه متاسوماتیکی با کاهش محتوای سیلیس یا سیلیس‌زدایی و افزایش نسبت Al/Si شرایط زمین‌شیمیایی برای تشکیل بلورهای کرندوم جدید و رشد مجدد کرندوم‌های اولیه مهیا شده است. این فرایندها که طی چرخه‌های پساماگمایی در توده‌های گرانیتی ایجاد می‌شود، به فرایندهای پلوماسیتی معروف است. طبقه‌بندی‌های انجام‌شده در پگماتیت‌ها، بر اساس فراوانی عناصر کمیاب و محتوی فسفر در بلورهای فلدسپار بیانگر بارور بودن این سنگ‌ها از عناصر کمیاب است. این پگماتیت‌ها در گروه غنی از لیتیم و بریلیم قرار‌گرفته است. همچنین مقایسه ترکیب شیمیایی بلورهای کرندوم با ذخایر معروف کرندوم در سایر نقاط جهان نشان می‌دهد، این سنگ‌ها همانندی ویژه‌ای با ذخایر کرندوم ماگمایی در ارتباط با توده‌های نفوذی سینتی دارد. به علاوه، این سنگ‌ها ترکیب مشابه با ذخایر ماگمایی ایجاد‌شده با فرایندهای متاسوماتیکی نشان می‌دهد. 

کلیدواژه‌ها


Aliani, F., Maanijou, M., Sabouri, Z. and Sepahi, A.A., 2012. Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran. Geochemistry, 72(4): 363–383. https://doi.org/10.1016/j.chemer.2012.05.001
Ayers, J.C. and Watson, E.B., 1991. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society, 335(1638): 365–375. https://doi.org/10.1098/rsta.1991.0052
Barth, T., 1929. Zur Genese der Pegmatite im Urgebirge. 1. Die Geologie und Petrographie der granitischen Pegmatite im südlichsten Norwegen. Geologiska Föreningen i Stockholm Förhandlingar, 51(1): 125–128. https://doi.org/10.1080/11035892909447064
Beharifar, A.A., 2012. Fabric of migmatites. In: F. Masoudi (Editor), Migmatites. Tarbiat Moalem University Press, Tehran, pp. 37–72. (in Persian with English abstract)
Bonazzi, M., Langone, A., Tumiati, S., Dellarole, E., Mazzucchelli, M., Giovanardi, T. and Zanetti, A., 2020. Mantle-Derived Corundum-Bearing Felsic Dykes May Survive Only within the Lower (Refractory/Inert) Crust: Evidence from Zircon Geochemistry and Geochronology (Ivrea–Verbano Zone, Southern Alps, Italy). Geosciences, 10(8): 1–32. https://doi.org/10.3390/geosciences10080281
Černý, P., 1991. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Part II: Regional and global environments and petrogenesis. Geoscience Canada, 18(2): 49–81. Retrieved Octuber 25, 2022 from https://journals.lib.unb.ca/index.php/GC/article/view/3722
Černý, P. and Ercit, S., 2005. The classification of granitic pegmatites revisited. The Canadian mineralogist, 43(6): 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005
Černý, P., Meintzer, R.E. and Anderson, A.J., 1985. Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Canadian Mineralogist, 23(3): 381–421. Retrieved, 2 March 2017 from https://pubs.geoscienceworld.org/canmin/article-abstract/23/3/381/11780/Extreme-fractionation-in-rare-element-granitic
Deer, W., Howie, R. and Zussman, J., 2013. An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland, 506 pp. https://doi.org/10.1180/DHZ
Dokukinaa, K.A., Konilova, A.N., Vanb, K.V. and Mintsa, M.V., 2017. Dumortierite- and Corundum-Bearing Quartz–Feldspar–Mica Rocks of the Belomorian Eclogite Province: An Example of Melting of Phengite + Quartz. Doklady Earth Sciences, 477(1): 1353–1357. https://doi.org/10.1134/S1028334X17110204
Eghlimi, B., 2000. Geologcal map of Hamdan, scale 1:100000. Geological Survey and Mineral Exploration of Iran.
Engel, A.E.J., Engel, C.G.,  Chodos, A.A. and  Godijn, E., 1958. Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains. Gological Survey Aamrica Bulletin, 69(11): 1369–1414. https://doi.org/10.1130/0016-7606(1958)69[1369:PMAGOT]2.0.CO;2
Giuliani, G., Ohnenstetter, D., Fallick, A.E., Groat, L. and Fagan, A.J., 2014. The geology and genesis of gem corundum deposits. In: L.A. Groat (Editor), Gem corundum. Mineralogical Association of Canada, Tucson, pp. 22–112. Retrieved July 11, 2018 from http://eprints.gla.ac.uk/89825/
Gordiyenko, V.V., 1971. Concentration of Li, Rb and Cs in potash feldspar and muscovite as criteria for pegmatites. International Geology Review, 13‌(2):134–142. https://doi.org/10.1080/00206817109475411
Hey, M., 1954. A new review of the chlorites. Mineralogical Magazine and Journal of the Mineralogical Society, 30(224): 277–292. https://doi.org/10.1180/minmag.1954.030.224.01
Khodorevskaya, L.‌I. and Varlamov, D.A., 2018. High-Temperature Metasomatism of the Layered Mafic-Ultramafic Massif in Kiy Island, Belomorian Mobile Belt. Geochemistry internasional., 56(6): 535–553. https://doi.org/10.1134/S001670291806006X
Linnen, R.L., Van Lichtervelde, M. and Černý, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275–280. https://doi.org/10.2113/gselements.8.4.275
Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M., 2011. U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran. Journal of Asian Earth Sciences, 41(3): 238–249. https://doi.org/10.1016/j.jseaes.2011.03.006
Monfaredi, B., Hauzenberger, C.A., Neubauer, F., Schulz, B., Genser, J., Shakerardakani, F. and Halama, R., 2020. Deciphering the Jurassic-Cretaceous evolution of the Hamadan metamorphic complex during Neotethys subduction, western Iran. Internasional Journal of Earth Sciences (Geolgy Rundsch), 109(3): 2135–2168. https://doi.org/10.1007/s00531-020-01893-x
Müller, A., Simmons, W., Beurlen, H., Thomas, R., Ihlen, P.M., Wise, M., Roda-Robles, E., Neiva, A.M.R. and Zagorsky, V., 2022. A proposed new mineralogical classification system for granitic pegmatites – Part I: History and the need for a new classification. The Canadian Mineralogist, 60(2): 203–227. https://doi.org/10.3749/canmin.1700088
Ndikumana, J.d.D., Bolarinwa, A.T., Adeyemi, G.O., Olajide-Kayode, J. and Nambaje, C., 2020. Geochemistry of feldspar and muscovite from pegmatite of the Gatumba area, Karagwe Ankole Belt: implications for Nb–Ta–Sn mineralisation and associated alterations. SN Applied Sciences, 2(1568): 1–12. https://doi.org/10.1007/s42452-020-03370-1
Peucat, J.‌J., Ruffaut, P., Fritsch, E., Bouhnik-Le, E., Simonet, C. and Lasnier, B., 2007. Ga/Mg ratio as new geochemical tool to differentiate magmatic from metamorphic blue sapphire. Lithos, 98(1–4): 261–271. https://doi.org/10.1016/j.lithos.2007.05.001
Rakotondrazafy, A.F.M., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Rakotosamizanany, S., Andriamamonjy, A., Ralantoarison, T., Razanatseheno, M., Offant, Y. and Garnier V., 2008. Gem corundum deposits of Madagascar: A review. Ore Geology Reviews, 34(1–2): 134–154. https://doi.org/10.1016/j.oregeorev.2007.05.001
Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval., EV., Mfiller, G., Nieva, M.R., Radoslovich, E.W., Robert, J.L., Sassi, ER, Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas. Clays and Clay Minerals, 46(5): 586–595. https://doi.org/10.1346/ccmn.1998.0460513
Robb, L.J. and Robb, V.M., 1979. The nature of Archean pegmatite deposits in the North-Eastern Transvaal University of the Witwatersrand, Economic Geology Research Unit, 30 pp. Retrieved Jun 15, 2010 from https://books.google.com/books/about/The_Nature_of_Archaean_Pegmatite_Deposit.html?id=isUKAQAAMAAJ
Sadeghi, H., Mahmoudi, S., Aryan, M. and Ghafari, M., 2022. Geochemistry and gemology characteristics of corundum in the Khakoo pegmatites in the southeast of Alvand batholith (west Iran). Iranian Journal of Crystallography and Mineralogy, 30(3): 474–459. (in Persian with English abstract) https://doi.org/10.52547/ijcm.30.3.459 
Sajjadi Alehashem, F., Moazzen, M. and Jahangiri, A., 2021. Introducing semi-gem quality blue corundum from the Alvand complex, Hamedan, west Iran. Periodico di Mineralogia, 90(2): 195–209. https://doi.org/10.13133/2239-1002/17315
Sánchez-Muñoz, L., Müller, A., Andrés, S.L., Martin, R.F., Modreski, P.J. and de Moura, O.J.M., 2017. The P-Fe diagram for K-feldspars: a preliminary approach in the discrimination of pegmatites. Lithos, 272–273: 116–127. https://doi.org/10.1016/j.lithos.2016.10.030
Schmetzer, K. and Peretti, A., 1999. Some Diagnostic Features of Russian Hydrothermal Synthetic Rubies and Sapphires. Gems and Gemology, 35(1): 17–28. https//doi.org/10.5741/GEMS.35.1.17  
Schwarz, D., Pardieu, V., Saul, J.M., Schmetzer, K., Laurs, B.M., Giuliani, G., Klemm, L., Malsy, A.K., Erel, E., Hauzenberger, Ch., Du Toit, G., Fallick, A.E. and Ohnenstetter, D., 2008. Rubies and sapphires from Winza, Central Tanzania. Gems and Gemology, 44(4): 322–347. http://dx.doi.org/10.5741/GEMS.44.4.322
Sepahi, A., Jafari S.R. and Mani-Kashani, S., 2006. The study of chemical composition and evolution of minerals during various metamorphic events in the Hamadan region. Iranian Journal of Crystallography and Mineralogy 14(2): 431–454. (in Persian) Retrieved October 10, 2022 from http://ijcm.ir/article-1-687-fa.html
Sepahi, A.A., Jafari, S.R., Osanai, Y., Shahbazi, H. and Moazzen, M., 2018. Age, petrologic significance and provenance analysis of the Hamedan low-pressure migmatites Sanandaj-Sirjan zone, west Iran. International Geology Review, 61(12): 1446–1461. https://doi.org/10.1080/00206814.2018.1517392
Sepahi, A.A., Vahidpour, H., Lentz, D.R., McFarlane, C.R.M, Maanijou, M., Salami, S., Miri, M., Mansouri, M. and Mohammadi, R., 2020. Rare sapphire-bearing syenitoid pegmatites and associated granitoids of the Hamedan region, Sanandaj-Sirjan zone, Iran: analysis of petrology, lithogeochemistry, and zircon geochronology/trace element geochemistry. Geological Magazine, 157(9): 1499–1525. https://doi.org/10.1017/S0016756820000023
Sepahi, A.A., Whitney, D.L. and Baharifar, A.A., 2004. Petrogenesis of andalusite-kyanite-sillimanite veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. Journal of Metamorphic Geology, 22(2): 119–134. https://doi.org/10.1111/j.1525-1314.2004.00502.x
Shahbazi, H., Salami, S. and Siebel, W., 2014. Genetic classification of magmatic rocks from the Alvand plutoniccomplex, Hamedan, western Iran, based on zircon crystal morphology, Geochemistry, 74(4): 577–584. http://dx.doi.org/10.1016/j.chemer.2013.11.001
 
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.J. and Vousoughi Abedini, M., 2010. Geochemistry and U–Pb zircon geochoronology of Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): New evidence forJurassic magmatism. Journal of Asian earth sciences, 39(6): 668–683. https://doi.org/10.1016/j.jseaes.2010.04.014
Sheikhi Gheshlaghi, R., Ghorbani, M., Sepahi, A.A., Deevsalar, R. and Shinjo, R., 2020. Petrogenesis of gem sapphire in a pegmatite-aplite vein from the Alvand batholith, Western Iran. Mineralogy and Petrology, 114(8): 501–513. https://doi.org/10.1007/s00710-020-00716-w
Simonet, C., Fritsch, E. and Lasnier, B.A., 2008. A Classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, 34(1–2): 127–133. https://doi.org/10.1016/j.oregeorev.2007.09.002
Simonet, C., Paquette, J.L., Pin, C., Lasnier, B. and Fritsch, E., 2004. The Dusi (Garba Tula) sapphire deposit, Central Kenya—A unique Pan-African corundum-bearing monzonite. Journal of Asian earth sciences. 38(4): 401–410. https://doi.org/10.1016/j.jafrearsci.2004.02.002
Smeds, S.A., 1992. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium- and tin-bearing pegmatites in Sweden. Journal of Geochemical Exploration, 42(2–3): 351–369. http://dx.doi.org/10.1016/0375-6742(92)90032-4
Smite, I.V., 1974. Feldspar Minerals. Crystal Structure and Physical Properties. Springer Berlin, Heidelberg, 625 pp. https://doi.org/10.1007/978-3-642-96173-1
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1258–1229. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
Sutherland, L.F., Meffre, S. Giuliani, G., Fallick, E.‌A. Graham, T.I. and Webb, B.G., 2009. Gem corundum megacrysts from east Australia basaltic fields: trace elements, oxygen isotopes and origin. Australian Journal of Earth Sciences, 56(7): 1003–1022. https://doi.org/10.1080/08120090903112109
Van Long, P., Quang Vinh, H., Garnier, V., Giuliani, G., Ohnenstetter, D., Lhomme, T., Schwarz, D., Fallick, A.E., Dubessy, J. and Trong Trinh, P., 2004. Gem corundum deposits in Vietnam. Journal of Gemmology, 29(3): 129–147. Retrieved October 25, 2022 from http://eprints.gla.ac.uk/931/1/Jo_Gemm_29%283%29_129-147.pdf
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–‌187. https://doi.org/10.2138/am.2010.3371
Zwaan, J.C., (Hanco), Buter, E., Mertz-Kraus, R. and Kane, R.E. 2015. The Origin of Montana’s Alluvial Sapphires: Inclusions, Geochemistry, and Indications of a Metasmatic Origin. Gems & Gemology, 51(4): 370–391. Retrieved September  10, 2019 from https://www.gia.edu/doc/GG-WN15-Zwaan.pdf
 
CAPTCHA Image