کانه‌زایی اپی‌ ترمال فلزهای پایه و گران‌ بهای نوع سولفیداسیون حدواسط در کانسار قبچاق (شمال‌ غرب قره‌ چمن، آذربایجان شرقی): شواهد زمین‌ شناسی، کانه‌ زایی و زمین‌ شیمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

کانه‌زایی فلزهای پایه و گران‌بها در کانسار قبچاق به ‌صورت رگه‌های برشی کوارتز- سولفیدی‌ درون توالی توف و گدازه‎‌ ائوسن  و توده‌ کوارتزدیوریت- گابرو الیگوسن رخ‌داده است. پیریت، کالکوپیریت، گالن، اسفالریت و طلا همراه با اندکی رآلگار، پسیلوملان و پیرولوزیت، کانه‌های فلزی و کوارتز، سریسیت، کلریت و کلسیت کانی‌های باطله هستند. بافت‌های کانسنگ شامل دانه‌‌پراکنده، رگه- رگچه‌ای، بِرشی، شانه‌ای، کاکلی، گل‌کلمی، پوسته‌ای، پرمانند و پُرکننده فضای خالی است. پنج مرحله کانه‌زایی در قبچاق قابل تشخیص است. مرحله اول کانه‌زایی با سیلیسی‌شدن سنگ‌های میزبان همراه با اندکی پیریت دانه­پراکنده مشخص می‌شود. مرحله دوم شامل رگه- رگچه‌های کوارتزی و بِرش‌های گرمابی است که حاوی مقادیر متغیری پیریت، کالکوپیریت، گالن، اسفالریت، ± طلا ± رآلگار هستند. مرحله سوم با کوارتز و اکسیدها- هیدروکسیدهای منگنز (پسیلوملان، پیرولوزیت و براونیت) در رگه‌ها و سیمان گرمابی بِرش‌ها قابل تشخیص است. مرحله چهارم شامل رگه و رگچه‌های کوارتز (کلسیت- کلریت) و مرحله پنجم شامل کلسیت با بافت‌های رگچه‌ای و پرکننده فضاهای خالی است. دگرسانی‌های گرمابی شامل سیلیسی، آرژیلیک متوسط، کربناتی، کلریتی و پروپلیتیک است. الگوی عناصر کمیاب  و کمیاب خاکی بهنجارشده به کندریت برای نمونه‌های کانه‌دار و سنگ‌های میزبان، مشابه و بیانگر نقش این سنگ‌ها در تأمین عناصر کانه‌ساز است. ویژگی‌های کانسار قبچاق با کانسارهای اپی‌ترمال نوع سولفیداسیون متوسط قابل مقایسه است.

کلیدواژه‌ها


Adeli, Z., Rasa, I. and Darvishzadeh, A., 2015. Fluid inclusion study of the ore-quartz veins at
Haftcheshmeh porphyry copper (Mo) deposit, Ahar–Arasbaran Magmatic Belt, NW Iran. Ore Geology Reviews, 65‌(2): 502–511. https://doi.org/10.1016/j.oregeorev.2014.05.022
Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015. Temporal–spatial distribution and
tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re–Os geochronology. Ore Geology Reviews, 70: 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Albinson, T., Norman, D.I., Cole, D. and Chomiak, B., 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In: T. Albinson and C.E. Nelson (Editors), New Mines and Discoveries in Mexico and Central America. Society of Economic Geologists, Littleton, pp. 1–32.  https://doi.org/10.5382/SP.08.01
Asadian, A., Amini Fazl., A. and Khodabandeh, A., 1993. Geological map of Torkamanchay-Qarachaman, scale 1:100,000. Geological Survey of Iran.
Baghban, S., Hosseinzadeh, M.R., Moayyed, M., Mokhtari, M.A.A. and Gregory, D., 2015.
Geology, mineral chemistry and formation conditions of calc-silicate minerals of Astamal Fe-LREE distal skarn deposit, Eastern Azarbaijan Province, NW Iran. Ore Geology Reviews, 68: 79–96. https://doi.org/10.1016/j.oregeorev.2014.12.016   
Baghban, S., Hosseinzadeh, M.R., Moayyed, M., Mokhtari, M.A.A., Gregory, D. and Mahmoudi Nia, H., 2016. Chemical composition and evolution of the garnets in the Astamal Fe-LREE distal skarn deposit, Qara-Dagh–Sabalan metallogenic belt, Lesser Caucasus, NW Iran. Ore Geology Reviews, 78: 166–175. https://doi.org/10.1016/j.oregeorev.2016.02.020
Behrouzi, A., Amini Fazl, A. and Amini Azar, R., 1998. Geological map of Bostanabad, scale 1:100,000. Geological Survey of Iran.
Bienvenu, P., Bougault, H., Joron, J.L., Treuil, M. and Dmitriev, L. 1990. MORB alteration: Rare earth element/non-rare hydromagmaphile element fractionation. Chemical Geology, 82: 1–14.  https://doi.org/10.1016/0009-2541(90)90070-N
Ebrahimi, S., Alirezaei, S. and Yuanming, P., 2011. Geological setting, alteration, and fluid
inclusion characteristics of Zaglic and Safikhanloo epithermal gold prospects, NW Iran. In: A.N. Sial, J.S. Bettencourt, C.P. De Campos and V.P. Ferreira (Editor), Granite Related Ore Deposits: An Introduction. Geological Society of London, Special Publication, London, 350, pp. 133–147. https://doi.org/10.1144/SP350.8
Ebrahimi, S., Pan, Y., Alirezaei, S. and MehrPartou, M., 2009. Fluid inclusion and mineralogical studies of the Sharafabad epithermal gold deposit, NW Iran. Scientific Quarterly Journal of Geosciences, 18‌(71): 149–154. http://dx.doi.org/10.22071/gsj.2010.57004
Einaudi, M.T., Hedenquist, J.W. and Inan, E.E., 2005. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: S.F. Simmons and I. Graham (Editors), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Society of Economic Geologists, Littleton, pp. 285–313. https://doi.org/10.5382/SP.10.15
Gemmell, J. B., 2004.  Low- and intermediate-sulfidation epithermal deposits. In: D.R. Cooke, C.L. Deyel and J. Pongratz (Editors), 24 Ct Gold Workshop. University of Tasmania, Hobart, Australia, pp. 57–63. Retrieved July 20, 2022 from http://catalogobiblioteca.ingemmet.gob.pe/cgi-bin/koha/opac-detail.pl?biblionumber=40195
Ghorbani, A., Kouhestani, H. and Mokhtari, M.A.A., 2022. Genesis of the Varmazyar Pb–Zn (Ag) occurrence, Tarom-Hashtjin metallogenic belt: Insights from ore geology, geochemistry and fluid inclusion studies. Journal of Economic Geology, 14‌ (1): 1–38. (in Persian with extended English abstract) https://doi.org/10.22067/econg.2021.51947.86716
Hedenquist, J.W., Arribas, A. and Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Littleton, pp. 245–277. https://doi.org/10.5382/Rev.13.07
Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Economic Geology, 93: 651–670. https://doi.org/10.2113/gsecongeo.93.5.651
Humphris, S.E., 1984. The mobility of the rare earth elements in the crust. In: P. Henderson (Editor), Developments in Geochemistry. Elsevier, Amsterdam, pp. 317–342.  https://doi.org/10.1016/B978-0-444-42148-7.50014-9
Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A.M. and Mehrabi, B., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52 (2): 608–630. https://doi.org/10.1080/00206810903416323
Khodabandehlou, Z., Ghaderi, M. and Rastad, E., 2018. Mineralogy, texture and structure, and formation stages of the Golijeh intermediate-sulfidation epithermal deposit in Tarom subzone of western Alborz – Azerbaijan zone. Advanced Applied Geology, 8‌(2): 9–20. https://doi.org/10.22055/aag.2018.24286.1802
 Kouhestani, H., Mokhtari, M.A.A., Chang, Z. and Johnson, A.C., 2018. Intermediate-sulfidation type base metal mineralization at Aliabad–Khanchy, Tarom–Hashtjin metallogenic belt. NW Iran. Ore Geology Reviews, 93: 1–18. https://doi.org/10.1016/j.oregeorev.2017.12.012
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z. and Zhao, J.X., 2019a. Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 109: 564–584. https://doi.org/10.1016/j.oregeorev.2019.05.014
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z. and Zhao, J.X., 2019b. Origin and evolution of hydrothermal fluids in the Marshoun epithermal Pb–Zn–Cu (Ag) deposit, Tarom–Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 113: 103087. https://doi.org/10.1016/j.oregeorev.2019.103087
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z. and Zhang, X.N., 2020. Genesis of the Abbasabad epithermal base metal deposit, NW Iran: Evidences from ore geology, fluid inclusion and O–S isotopes. Ore Geology Reviews, 126: 103752. https://doi.org/10.1016/j.oregeorev.2020.103752
Kouhestani, H., Mokhtari, M.A.A. and Zhang, X.N., 2022. Fluid inclusion and stable isotope constraints on the genesis of epithermal base-metal veins in the Armaqan Khaneh mining district, Tarom-Hashtjin
metallogenic belt, NW Iran. Australian Journal of Earth Sciences, 69‌(6): 844–860. https://doi.org/10.1080/08120099.2022.2033320
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7 (1): 25–41. https://doi.org/10.1016/0169-1368(92)90017-F   
Maghsoudi, A., Yazdi, M., Mehrpartou, M., Vosoughi, M. and Younesi, S., 2014. Porphyry Cu–Au mineralization in the Mirkuh-e-Ali Mirza magmatic complex, NW Iran. Journal of Asian Earth Sciences, 79‌(B): 932–941. https://doi.org/10.1016/j.jseaes.2012.10.002
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M. and Marsh, E.E., 2016. Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews, 78: 41–57. https://doi.org/10.1016/j.oregeorev.2016.03.016
Mokhtari, M.A.A., 2012. The mineralogy and petrology of the Pahnavar Fe skarn, in the Eastern Azarbaijan, NW Iran. Central European Journal of Geosciences, 4‌(4): 578–591. https://doi.org/10.2478/s13533-012-0106-y
Mokhtari, M.A.A., Moinvaziri, H., Ghorbani, M.R. and Mehrpartou, M., 2014. Geology and Geochemistry of Aniq-Qarachilar Au- Cu- Mo Mineralization (NE of Kharvana, Eastern Azarbaijan). Scientific Quarterly Journal of Geosciences, 23 (4): 135–150. http://dx.doi.org/10.22071/gsj.2014.43973
Murphy, J.B. and Hynes, A.J., 1986. Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two meta-basaltic suites in the Appalachians. Canadian Journal of Earth Sciences, 23‌(8): 1138–1144.  https://doi.org/10.1139/e86-112
Nabavi, M.H., 1976. An introduction to geology of Iran. Geological Survey of Iran, Tehran, 109 pp. (in Persian)
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 38 (5): 757–775. http://dx.doi.org/10.1016/0016-7037(74)90149-5
Salehi, T., Ghaderi, M. and Rashidnejad-Omran, N., 2011. Mineralogy and geochemistry of rare earth elements in Qomish Tappeh Zn–Pb–Cu (Ag) deposit, southwest of Zanjan. Journal of Economic Geology, 2 (2): 235–254. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V2I2.7853    
Salehi, T., Ghaderi, M. and Rashidnejad-Omran, N., 2015. Epithermal base metal-silver mineralization at Qomish Tappeh deposit, southwest of Zanjan. Scientific Quarterly Journal, Geosciences, 25‌(97): 329–346. (in Persian with English abstract)  https://doi.org/10.22071/GSJ.2015.41519    
Sillitoe, R.‌H. and Hedenquist, J.‌W., 2003. Linkages between volcanotectonic settings, ore fluid
compositions, and epithermal precious-metal deposits. In: S.F. Simmons and I. Graham (Editors), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth. Economic Geology Special Publication 10, Littleton, pp. 315–343. Retrieved July 20, 2022 from https://www.researchgate.net/publication/285488888
Simmonds, V. and Moazzen, M., 2015. Re–Os dating of molybdenites from Oligocene Cu–Mo–Au mineralized veins in the Qarachilar area, Qaradagh batholith (northwest Iran): Implications for understanding Cenozoic mineralization in South Armenia, Nakhchivan and Iran. International Geology Review, 57 (3): 290–304. https://doi.org/10.1080/00206814.2014.1003339
Simmonds, V., Moazzen, M. and Mathur, R., 2017. Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re–Os age data for Sungun porphyry Cu–Mo deposit. International Geology Review, 59‌(12): 1561–1574. https://doi.org/10.1080/00206814.2017.1285258
Simmons, S.F., White, N.C. and John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton, pp. 485–522. https://doi.org/10.5382/AV100.16
Sohbatloo, M., 2022. Geology, geochemistry and genesis of Qebchaq base and precious metals mineralization, NW Qarehchaman. Unpublished M.Sc. Thesis, University of Zanjan, Zanjan, Iran, 105 pp. (in Persian with English abstract)
Thompson, R.N., 1982. Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology, 18‌(1): 49–107. https://doi.org/10.1144/sjg18010049 
Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30‌(3). https://doi.org/10.1029/2010TC002809 
Wang, L., Qin, K.Z., Song, G.Y. and Li, G.M., 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434–456. https://doi.org/10.1016/j.oregeorev.2019.02.023
Whitford, D.J., Korsch, M.J., Porritt, P.M. and Craven, S.J., 1988. Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology, 68‌(1–2): 105–119. https://doi.org/10.1016/0009-2541(88)90090-3
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95‌(1): 185–187. https://doi.org/10.2138/am.2010.3371
CAPTCHA Image