کانی شناسی، ژئوشیمی، میان بارهای سیال و منشأ کانه زایی آهن- مس- طلا همراه با توده های آذرین نفوذی احمدآباد، سمنان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ژئوشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

2 گروه زمین‌شیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

چکیده

محدودۀ کانه ­زایی احمدآباد در شمال­ شرق استان سمنان و در حد فاصل زون­های ساختاری البرز و ایران مرکزی واقع شده است. کانی ­سازی در کانسار به­ صورت اپی­ژنتیک در بخش­های کم ­عمق و سطحی کانسار با بافت­های پر کنندۀ فضای خالی، رگه- رگچه ­ای، توده ­ای و افشان در سنگ­های میزبان نفوذی با ماهیت مونزونیت و مونزودیوریت و به مقدار کمتر گرانودیوریت و گرانیت و در واحدهای آتشفشانی آندزیت، تراکی­آندزیت و داسیت رخ داده است. کانه ­زایی شامل انواع اکسیدی (هماتیت)، سولفیدی (پیریت و کالکوپیریت) و اکسی- هیدروکسیدی (گوتیت و لیمونیت) است و باریت، کلسیت و کوارتز باطله­ های اصلی در کانسار هستند. بر اساس بررسی­های ژئوشیمیایی روی کانسنگ آهن، نمونه ­ها به دو گروه کم ­عیار و عیار متوسط دسته ­بندی می­شود. بر اساس مطالعات میکروترمومتری، دمای همگن­ شدن و شوری میان­بارهای سیال در کوارتز به ترتیب برابر 194 تا 370 درجۀ سانتی­گراد و 74/1 تا 07/13 درصد وزنی معادل نمک طعام و در کانی باریت 115 تا 256 درجۀ سانتی­گراد و 62/3 تا 45/19 درصد وزنی معادل نمک طعام است. بر اساس این مطالعات، سردشدن و رقیق ­شدگی سطحی سیال مسئول کانه­زا در اثر اختلاط با سیال جوی عامل اصلی کانی ­سازی در کانسار احمدآباد است. توده­ های نفوذی نیمه­ عمیق ضمن صعود به مناطق کم ­عمق پوستۀ زمین، درون سنگ­های آتشفشانی در بخش­های گسلی و شکستگی­ها جای گرفته­­ اند؛ و در نتیجۀ کاهش دما، فشار و افزایش فوگاسیتۀ اکسیژن، در بخش­های سطحی منجر به کانی­ سازی گرمابی در سنگ­های میزبان آتشفشانی و نفوذی شده است. بر این اساس می­توان کانه­ زایی در کانسار احمدآباد را از نوع کانی ­سازی های گرمابی دانست.

کلیدواژه‌ها


Alderton, D. M. H., Pearce, J. A., and Potts, P. J., 1980. Rare earth element mobility during granite alteration: evidence from Southwest England. Earth Planet Scientific Letters, 49(1): 149-165. https://doi.org/10.1016/0012-821x(80)90157-0
Barnes, H.L., 1979. Solubilities of ore minerals. In: H.L. Barnes (Editor), Geochemistry of hydrothermal ore deposits. John Wiley and sons, New York, pp. 406-460. Retrieved October 17, 2021 from https://scholar.google.com
Bean, R.E., 1983. The Magmatic-Meteoric Transition. Geothermal Resources Council, California, Report 13, 253 pp.
Boynton, W.W., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare earth element geochemistry. Elsevier, New York, pp. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Dickin, A. P., 1988. Evidence for limited REE leaching from the Roffna Gneiss, Switzerland. Contributions to Mineralogy and Petrology, 99(2): 273-275. Retrieved Sep 5, 2021 from https://scholar.google.com
Ferkous, K., and Leblanc, M., 1995. Gold mineralization in the west Hoggar shear zone, Algeria. Mineral Deposita, 30(3): 211-224. Retrieved Sep 5, 2021 from https://scholar.google.com
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and Magnetite in Kiruna-type iron ores and some other iron ore type. Ore Geology Reviews, 9(6): 489-510. https://doi.org/10.1016/0169-1368(94)00015-G
Ghorbani, M., 2003. Introduction to the economic geology of Iran. Geological Survey of Iran, Tehran, 695 pp.
Groves, D.I. and Bierlein, F.P., 2007. Geodynamic setting of mineral deposit system. Journal of the Geological Society, 164(1): 19-30. https://doi.org/10.1144/0016-76492006-065
Groves, D.I., Bierlein, F.P., Meinert, L.D. and Hitzman, M.W., 2010. Iron Oxide Copper- Gold (IOCG) Deposits through earth History: Implications for Origin, Lithospheric Setting, and Distiniction from other epigenetic iron oxide deposits. Economic Geology, 105(3): 641-654. https://doi.org/10.2113/gsecongeo.105.3.641
Guilbert, J.M. and Park, C.F., 1997. The Geology of Ore Deposits. New York, American, 985pp.
Haji Babaei, A. and Ganji, A., 2018. Characteristics of the Ahmadabad Hematite/Barite deposit, Iran- studies of mineralogy, geochemistry and fluid inclusions. Geologos, 24(1): 55-68. https://doi.org/10.2478/logos-2018-0004
Hart, C.J.R., Mair, J.L., Goldfarb, R.J. and Groves, D.I., 2004. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 95(1-2): 339-356. Retrieved June 29, 2021 from https://scholar.google.com
Hitzman, M.W., 2000. Iron Oxide-Cu-Au deposits: what, where, when, and why. In: T.M. Porter (Editor), Hydrothermal Iron Oxide Copper-Gold and Related deposits: A global Perspective, Adelaide, Australia, pp. 9-25.
Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58(1-4): 241-287. https://doi.org/10.1016/0301-9268(92)90121-4
Jiang, S.Y. and Zhao, K.D., 2007. Rare earth element and yttrium analyses of sulfides from the Dachang Sn-polymetallic ore field, Guangxi Province, China: Implication for ore genesis. Geochemical Journal, 41(2): 121-134. https://doi.org/10.2343/geochemj.41.121
Ketabforoush, Sh., 2016. Investigation of mineralization in Ahmadabad, Semnan region on the basis of petrological, mineralogical and alteration evidence. M.Sc. Thesis, Damghan University, Semnan, Iran, 132 pp.
Kikawada, Y., 2001. Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology, 176(1-4): 137-149. https://doi.org/10.1016/s0009-2541(00)00375-2
Kordian, Sh., Mokhtari, M.A.A., Kouhestani, H., and Veiseh, S., 2020. Geology, mineralogy, structure and texture, geochemistry and genesis of the Golestan Abad iron oxide-apatite deposit (east of Zanjan). Journal of Economic Geology, 12(3): 229-335. (in Persian with English abstract). https://doi.org/10.22067/econg.v12i3.79628
Large, R.R., 1975. Zonation of hydrothermal minerals at the Juno mine, Tennant Creek goldfield, Central Australia. Economic Geology, 70(8): 1387-1413. https://doi.org/10.2113/gsecongeo.70.8.1387
Mason, B. and Moore, C.B., 1982. Principles of Geochemistry. John Wiley and Sons, New York, 350 pp.
Monteiro, L.V.S., Xavier, R.P., Hitzman, M.W., Juliani, C., Filho, C.R.S. and Carvalho, E.R., 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit. Carajas Mineral Province, Brazil. Ore geology Reviews, 34(3): 317-336. https://doi.org/10.1016/j.oregeorev.2008.01.003
Nakhaei, M., and Mohammadi, S.S., 2021. Petrography, geochemistry and tectonic setting of adakitic bodies in the Tighanab area and their relationship with iron skarn mineralization (southeast of Sarbisheh-east of Iran). Journal of Economic Geology, 12(4): 449-470. (in Persian with English abstract). https://doi.org/10.22067/econg.v12i4.81783
Naslund, H.R., Aguirre, R., Dobbs, F.M., Henriquez, F. and Nystrom, J.O., 2000. The origin, emplacement and eruption of ore magmas. Actas IX Congreso Geologico Chileno (Puerto Varas) 24(2): 135-139. Retrieved June 29, 2021 from https://scholar.google.com
Nezafati, N. 2006. Au-Sn-W-Cu-Mineralization in the Astaneh-Sarband Area, West Central Iran, including a comparison of the ores with ancient bronze artifacts from Western Asia Unpublished Ph.D. Thesis, University of Tuebingen, Tuebingen, Germany, 114 pp.
Ohmoto, H. and Goldhaber, M.B., 1997. Sulfur and Carbon isotopes. In: H.L. Barnes (Editor), Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, pp. 517-612. Retrieved Oct 17, 2021 from https://scholar.google.com
Palacios, C. M., Hein, U. F., and Dulski, P., 1986. Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper-silver deposit, Northern Chile. Earth Planet Scientific Letters, 80(3-4): 208-216. https://doi.org/10.1016/0012-821x(86)90105-6
Pollard, P.J., 2006. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineralium Deposita, 41(2): 179-187. https://doi.org/10.1007/s00126-006-0054-x
Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, United States, 644 pp.
Rolland, Y., Pillard, F. and Klapouzczak, A., 2007. Exercise program fornursing home resident with Alzheimer’s disease: A 1-year randomized, controlled trial. Journal of the American Geriatrics Society, 55(2): 158-165.https://doi.org/10.1111/j.1532-5415.2007.01035.x
Rollinson, H.R., 1993. Using geochemical data: evaluation. presentation, interpretation. Longman Scientific and Technical, Essex, 352 pp.
Rosiere, C.A., Siemes, H., Quade, H., Brokmeier, H.G. and Jensen, E.M., 2001. Microstructures, texture and deformation mechanisms in hematite. Journal of Structural Geology, 23(9): 1429-1440. https://doi.org/10.1016/S0191-8141(01)00009-8
Selverstone, J., Morteani, G., and Stuade, J.M., 1991. Fluid channelling during ductile shearing: transformation of granodiorite into aluminous schist in the Tauern Window, eastern Alps. Journal of Metamorphic Geology, 9(4): 419-431. http://doi.org/10.1111/j.1525-1314.1991.tb00536.x
Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. 1985. A partical guied to Fluid inclusion studies. Blackie, London, 239 pp.
Stocklin, J., 1968. Structure history and tectonics of Iran: A review. The American Association of Petroleum Geologists Bulletin, 52(7): 1229-1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865
Tayefi, F. 2021 Mineralogy, geochemistry and microthermometry of siliceous Fe-Cu bearing veins associated with Ahmadabad intrusion, Semnan. M.Sc. Thesis, Kharazmi University, Tehran, Iran, 194 pp.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., DeHaller, A., Mark, G., Oliver, N.H.S. and Marschik, R., 2005. Iron oxide copper-gold deposits: geology, space-time distribution and possible modes of origin. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, and J.P. Richards (Editors), Economic Geology 100th anniversary volume. Society of Economic Geologist, USA, pp. 371-405. Retrieved June 29, 2021 from https://www.segweb.org
Yari, F., Zarrinkoub, M.H., and Mohammadi, S.S., 2021. Geology, petrography, mineral chemistry and fluid inclusion of the Kalate Shab iron skarn (East of Sarbisheh, Southern Khorasan). Journal of Economic Geology, 12(4): 563-584. (in Persian with English abstract). https://doi.org/10.22067/econg.v12i4.77836
CAPTCHA Image

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 28 آذر 1400
  • تاریخ دریافت: 06 خرداد 1400
  • تاریخ بازنگری: 27 مهر 1400
  • تاریخ پذیرش: 09 آبان 1400
  • تاریخ اولین انتشار: 28 آذر 1400