ژئوشیمی، کانه نگاری و توزیع عناصر خاکی کمیاب در گوسان های مرتبط با نهشته های سولفید توده ای آتشفشان زاد، مطالعه موردی: قلعه ریگی، جنوب غرب جیرفت، جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زمین شناسی و مهندسی نفت، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

3 گروه زمین شناسی، واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران

4 سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

محدوده قلعه ریگی در استان کرمان و جنوب ­غرب جیرفت قرار‌گرفته است. کانه ­زایی در این محدوده به صورت چینه ­سان در یک توالی آتشفشانی- رسوبی به سن ژوراسیک میانی- کرتاسه آغازین دیده می­ شود. هوازدگی سطحی زون­ های کانه ­دار موجب شده بخش اعظم سولفیدهای اولیه به اکسید و هیدروکسیدهای آهن تبدیل‌شده و گوسان تشکیل‌شود. بر اساس بررسی‌های میکروسکوپی و الکترونی، کانی‌های هماتیت، گوتیت، کوارتز و گروه ژاروسیت (نظیر ناتروژاروسیت و ژاروسیت) شناسایی شدند. نتایج تجزیه شیمیایی، بیانگر حضور مقادیر متوسط طلا (6/1 گرم در تن)، نقره (20 گرم در تن)، آرسنیک (11/0 درصدوزنی)، آنتیموان (58 گرم در تن)، مس (29/0 درصد وزنی)، سرب (2210 گرم در تن) و روی (497 گرم در تن) در افق ­های مختلف گوسان است. جایگاه زمین­ شناختی، الگوی توزیع عناصر خاکی کمیاب و غنی ­شدگی هرچند اندک؛ ولی مثبت Eu و زون­ بندی عناصر کانه ­ساز، گوسان­ های مورد بررسی را در دسته گوسان­ های غنی از طلا، بالغ و بارور مرتبط با ذخایر سولفید توده ­ای آتشفشان­ زاد قرار می­ دهد.

کلیدواژه‌ها


Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5–6): 692–725. https://doi.org/10.1017/S001675681100046X
Andrew, R.L., 1980. Supergene alteration and gossan textures of base-metal ores in Southern Africa. Minerals Science and Engineering, 12(4): 193–215. Retrieved October 10, 2019 from https://link.springer.com/chapter/10.1007%2F978-94-011-8056-6_7
Andrew, R.L., 2000. Short Course in Evaluation of Gossans in Mineral Exploration. Agência para o Desenvolvimento e Inovação do Setor Mineral Brasileiro, Brasilia, 57 pp.
Atapour, A. and Aftabi, A., 2007. The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: Implications for exploration and the environment. Journal of Geochemical Exploration, 93(1): 47–65. https://doi.org/10.1016/j.gexplo.2006.07.007
Badrzadeh, Z., Sabzehei, M., Rastad, E., Emami, M. and Gimeno, D., 2010. Various stages of Sulfide Mineralization in Sargaz Volcanogenic Massive Sulfide Deposit, Northwest Jiroft, Southern Sanandaj-Sirjan. Journal of Geosciences, 19(76): 85–94. (in Persian with English abstract) https://doi.org/10.22071/GSJ.2018.55653
Beukes, J.P., Giesekke, E.W. and Elliot, W., 2000. Nickel retention by goethite and hematite. Minerals Engineering, 13(14–15): 1573–1579. https://doi.org/10.1016/S0892-6875(00)00140-0
Blain, C.F. and Andrew, R.L., 1977. Sulphide weathering and themineral evaluation of gossans in mineral exploration. Minerals Science and Engineering, 9(3): 119–150. Retrieved October 10, 2019 from https://link.springer.com/referenceworkentry/10.1007%2F0-387-30842-3_44
Blanchard, R., 1968. Interpretation of Leached Outcrops. Nevada Bureau of Mines and Geology, Nevada, 66 pp.
Borna, B. 2008. Copper exploration in Ghaleh Rigi area with a map of scale 1:1000, Kerman province. Geological Survey of Iran, Tehran, Report 87/023, 62 pp.
Boudeulle, M. and Muller, J.P., 1988. Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon. A TEM study. Bulletin de Minéralogie, 111(2): 149–166. https://doi.org/10.3406/bulmi.1988.8080
Boyle, D.R., 1996. Supergene base metals and precious metals. In: O.R. Eckstrand, W.D. Sinclair and R.I. Thorpe (Editors), Geology of Canadian mineral deposit types. Geologic Survey of Canada, Ottawa, pp. 92–108. http://dx.doi.org/10.4095/207946
Boyle, D.R., 2003. Preglacial weathering of massive sulfide deposits in the Bathurst Mining Camp: Economic geology, geochemistry, and exploration applications. In: W.D. Goodfellow, S.R. McCutcheon and J.M. Peter (Editors), Massive Sulphide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Economic Geology Monograph, Littleton, pp. 689–721. Retrieved October 10, 2019 from https://www.segweb.org
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Esmaeili Sovieri, A., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Mahboubi, A., 2020. Knowledge-driven Approach to Exploration of Carbonate Hosted Zinc and Lead Deposits, Case study: North Irankuh district, Isfahan - Iran. Journal of Economic Geology, 11(4): 565-602. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V11I4.79111
Essalhi, M., Sizaret, S., Barbanson, L., Chen, Y., Lagroix, F., Demory, F., Nieto, J.M., Saez, R. and Capitan, M.A., 2011. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Mineralium Deposita, 46(8): 981–999. https://doi.org/10.1007/s00126-011-0361-8
Gahlan, H. and Ghrefat, H., 2018. Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia. Natural Resources Research, 27(1): 109–124. https://doi.org/10.1007/s11053-017-9341-8
Gieré, R., 1993. Transport and deposition of REE in H2S-rich fluids: evidence from accessory mineral assemblages. Chemical Geology, 110(1–3): 251–268. https://doi.org/10.1016/0009-2541(93)90257-J
Graf, J.L., 1977. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Economic Geology, 72(4): 527–548. https://doi.org/10.2113/gsecongeo.72.4.527
Hannington, M.D., Thompson, G., Rona, P.A. and Scott, S.D., 1988. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature, 333: 64–66. https://doi.org/10.1038/333064a0
Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3): 501–513. https://doi.org/10.1190/1.1440721
Jahangiri, H., Saadat, S., Mazaheri, S.A., Heidarian Shahri, M.R., Foudazi, M. and Omrani, J., 2020. The middle Jurassic–Early Cretaceous pillow and massive lava flows associated with pelagic sediments in the Ghaleh-Rigi area, southern east of Iran: age and geochemistry. Geopersia, 1.0(2): 245–261. https://doi.org/10.22059/geope.2019.278194.648471
Karimpour, M.H., Malekzadeh Shafaroudi, A., Esfandiarpour, A. and Mohammadnezhad, H., 2012.  Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG) mineralized system in Iran. Journal of Economic Geology, 3(2): 193–216. (in Persian with English abstract)  https://doi.org/10.22067/ECONG.V3I2.11420
Leybourne, M.I., Peter, J.M., Layton-Matthews, D., Volesky, J. and Boyle, D.R., 2006. Mobility and fractionation of rare earth elements during supergene weathering and gossan formation and chemical modification of massive sulfide gossan. Geochimica et Cosmochimica Acta, 70(5): 1097–1112. https://doi.org/10.1016/j.gca.2005.11.003
Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53(3): 745–750. https://doi.org/10.1016/0016-7037(89)90017-3
Mousivand, F. and Dolatkhah, R., 2006. Copper mineralization in the Mata area, southwest of Jiroft. Geological Survey of Iran, Tehran, Report 85/016, 75 pp.
Mousivand, F., Rastad, E., Peter, J.M. and Maghfouri, S., 2018. Metallogeny of volcanogenic massive sulfide deposits of Iran. Ore Geology Reviews, 95: 974–1007. https://doi.org/10.1016/j.oregeorev.2018.01.011
Ozdemir, A. and Sahinoglu, A., 2018. Important of Gossans in Mineral Exploration: A Case Study in Northern Turkey. International Journal of Earth Science and Geophysics, 4(1): 1–20. https://doi.org/0.35840/2631-5033/1819
Parbhakar-Fox, A., Hunt, J., Lottermoser, B., van Veen, E.M. and Fox, N., 2017. Prediction of Leachate Quality for a Gossan Dump, Angostura, Spain. In: B. Lottermoser (Editor), Environmental Indicators in Metal Mining. Springer, Cham, pp. 221–241. https://doi.org/10.1007/978-3-319-42731-7_13
Peter, J.M., Goodfellow, W.D. and Doherty, W., 2003. Hydrothermal sedimentary rocks of the Heath Steele Belt, Bathurst Mining Camp, New Brunswick: Part 2. Bulk and rare earth element geochemistry and implications for origin. In: W.D. Goodfellow, S.R. McCutcheon and J.M. Peter (Editors), Massive Sulphide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine, Littleton, CO, Society of Economic Geologists, pp. 391–415.
Pivovarov, S., 2001. Adsorption of cadmium onto hematite: temperature dependence. Journal of Colloid and Interface Science, 234(1): 1–8. https://doi.org/10.1006/jcis.2000.7235
Rajendran, S. and Nasir, S., 2017. Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews, 88(8): 317–335. https://doi.org/10.1016/j.oregeorev.2017.04.016
Ritchie, V.J., Ilgen, A.G., Mueller, S.H., Trainor, T.P. and Goldfarb, R.J., 2013. Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chemical Geology, 335(6): 172–188. https://doi.org/10.1016/j.chemgeo.2012.10.016
Salama, W., Anand, R., Morey, A. and Williams, L., 2019. Supergene gold in silcrete as a vector to the Scuddles volcanic massive sulfides, Western Australia. Mineralium Deposita, 54(8): 207–1228. https://doi.org/10.1007/s00126-019-00868-6
Sangameshwar, S. and Barnes, H., 1983. Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7): 1379–1397. https://doi.org/10.2113/gsecongeo.78.7.1379
Scott, K.M., Ashley, P.M. and Lawie, D.C., 2001. The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn–Pb–Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. Journal of Geochemical Exploration, 72(3): 169–191. https://doi.org/10.1016/S0375-6742(01)00159-5
Shahraki Ghadimi, A., 2003. Geological Map of Esfandagheh, scale 1:100000. Geological Survey of Iran.
Sherlock, R.L. and Barrett, T.J., 2004. Geology and volcanic stratigraphy of the Canatuan and Malusok volcanogenic massive sulfide deposits, southwestern Mindanao, Philippines. Mineralium Deposita, 39(1): 1–20. https://doi.org/10.1007/s00126-003-0350-7
Tashi, M., Mousivand, F. and Ghasemi H., 2017. Cu-Ag Besshi type volcanogenic massive sulfide mineralization in the Late Cretaceous volcano- sedimentary sequence: the case of Garmabe Paein deposit, southeast of Shahrood. Journal of Economic Geology, 9(1): 213–233. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V9I1.43062
Taylor, G.F., 1987. Gossan and Ironstone Evaluation in Mineral Exploration. Brazilian Geochemistry Society, Rio de Janeiro, 140 pp.
Törmänen, T.O. and Koski, R.A., 2005. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba Trough, southern Gorda Ridge. Economic Geology, 100(6): 1135–1150. https://doi.org/10.2113/gsecongeo.100.6.1135
Volesky, J.C., Leybourne, M.I., Stern, R.J., Peter, J.M., Layton-Matthews, D., Rice, S. and Johnson, P.R., 2017. Metavolcanic host rocks, mineralization, and gossans of the Shaib al Tair and Rabathan volcanogenic massive sulphide deposits of the Wadi Bidah Mineral District, Saudi Arabia. International Geology Review, 59(16): 1975–2002. https://doi.org/10.1080/00206814.2017.1307789
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilhelm, E.K. and Kosakevitch, A., 1979. Utilisation des chapeaux de fer comme guide de prospection. Bureau de Recherches Géologiques et Minières, 2(3): 109–140. Retrieved October 10, 2019 from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM8120123098
Wilmshurst, J.R. and Fisher, N.I., 1983. Classification scheme of gossans. In: R.E. Smith (Editor), Geochemical Exploration in Deeply Weathered Terrain. CSIRO Division of Mineralogy, Floreat Park, Western Australia, pp. 104–106. Retrieved October 10, 2019 from https://books.google.com/books?id=-ukNAQAAIAAJ
Yousefi, S.J., Aftabi, A. and Moradian, A., 2015. Exploration and economic significance of the gossan around Chahar Gonbad copper-gold mine, Sirjan. Scientific Quaterly Journal, Geosciences, 24(96): 189–200. https://doi.org/10.22071/GSJ.2015.41747