مطالعه دگرسانی، کانه نگاری، سیالات درگیر، اسپکتروسکوپی رامان و ایزوتوپ های پایدار اکسیژن- هیدروژن در کانسار آهن-آپاتیت لکه سیاه 1، استان یزد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان، ایران

2 مؤسسه علوم زمین اسلواکی، براتیسلاوا، اسلواکی

چکیده

کانسار آهن لکه­ سیاه 1 در 40 کیلومتری شمال‌شرقی شهرستان بافق در استان یزد و در پهنه زمین‌ساختی کاشمر- کرمان واقع‌شده است. واحدهای سنگی منطقه به کامبرین زیرین تعلق دارند و شامل ریولیت، ‌آندزیت، سنگ ­های آذرآواری، دولومیت و ماسه‌سنگ هستند. توده­ های نفوذی با ترکیب مونزونیت تا دیوریت در این واحـدهای سنگی نفوذ کرده ­اند. فراینـد دگرسـانی، سنـگ­ های منطقه را تحت‌تأثیر قرار داده؛ به طوری که مهـم ­ترین هاله ­هـای دگرسـانی رخ‌داده در منطـقه (سدیک)- کلسیک، کلـریتی­ شدن، اپیدوتی ­شدن، سریسیتی­ شدن، سیلیسی­ شدن و آرژیلیک است. مگنتیت کانه اصلی کانسار است که دارای بافت ­های توده ­ای، برشی و مارتیتی است. بر اساس بررسی‌های پتروگرافی، چهار نوع سیال درگیر در کانی کوارتز همراه کانسنگ مشاهده شده که شامل تک‌فاز مایع (L)، تک‌فاز گاز (V)، دوفازی (L+V) و سه­ فازی (L+V+H) هستند. دمای همگن‌شدن سیالات درگیر دو فازی بین 217 تا 428 و سه­ فازی بین 384 تا 467 درجه سانتی‌گراد و شوری برای سیالات دو فازی بین 10 تا 27 و برای سه­ فازی­ بین 40 تا 44 درصد معادل شوری نمک طعام به‌دست آمد. بر اساس بررسی‌های اسپکتروسکوپی لیزر رامان بر روی سیالات درگیر، میزان گاز N2 و CO2 در سیالات دو فازی به ترتیب 69 و 31 درصد و در سیالات درگیر سه‌فازی به ترتیب 33 و 67 درصد مولی است که منشأ آن می­تواند گاززدایی از گوشته و واکنش سیالات با سنگ­ های کربناته ­باشد. بررسی ترکیب ایزوتوپی O و H سیال در تعادل با کوارتز نشان می­ دهد که سیال اولیه در این کانه­ زایی­ منشأ ماگمایی داشته که در مرحله‌های بعدی با سیالات جوی اختلاط حاصل‌کرده که این فرایند با کاهش سیستماتیک دما و شوری همراه بوده است.

کلیدواژه‌ها


Bakker, R.‌J. and Diamond, L.‌W., 2006. Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes. American Mineralogist, 91(4): 635–657.‏ https://doi.org/10.2138/am.2006.1845
Barati, M. and Gholipoor, M., 2014. Study of REE behaviors, fluid inclusions, and O, S stable Isotopes in Zafar-abad iron skarn deposit, NW Divandarreh, Kordestan province. Journal of Economic Geology, 6(2): 235–‌275. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V6I2.20257
Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, 797 pp. Retrieved April 2, 2020 from Retrieved April 2, 2020 from https://www.wiley.com/en-bo/Geochemistry+of+Hydrothermal+Ore+Deposits%2C+3rd+Edition-p-9780471571445
Barton, M.D., 2014. Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry: Elsevier Science, USA, pp. 515–541. Retrieved July 10, 2020 from Retrieved July 10, 2020 from https:https://www.geo.arizona.edu/~mdbarton/MDB_papers_pdf/Barton%5B14_IOCGSystems_ToG2-Ch20.pdf
Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S. and Patrier, P., 2015. Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems–a review. Clay Minerals, 50(4): 497–523. https://doi.org/10.1180/claymin.2015.050.4.06
Chiaradia, M., Banks, D., Cliff, R., Marschik, R. and De Haller, A., 2006. Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br. Mineralium Deposita, 41(6): 565–573. https://doi.org/10.1007/s00126-006-0082-6‏‏
Childress, T.M., Simon, A.C., Day, W.C., Lundstrom, C.C. and Bindeman, I.N., 2016. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA. Economic Geology, 111(8): 2033–2044.‏ https://doi.org/10.2113/econgeo.111.8.2033
Clayton, R.N., O'Neil, J.R. and Mayeda, T.‌K., 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057–3067. https://doi.org/10.1029/JB077i017p03057
Craig, J.‌R. and Vaughan, D.‌J., 1994. Ore microscopy and ore petrography. John Wiley and Sons Inc., New York, 434 pp. Retrieved July 15, 2020 from https://www.researchgate.net/publication/290120333
Dare, S.A., Barnes, S.J. and Beaudoin, G., 2015. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607–617.‏ https://doi.org/10.1007/s00126-014-0560-1
De Melo, G.H., Monteiro, L.V., Xavier, R.P., Moreto, C.P. and Santiago, E., 2019. Tracing Fluid Sources for the Salobo and Igarapé Bahia Deposits: Implications for the Genesis of the Iron Oxide Copper-Gold Deposits in the Carajás Province, Brazil. Economic Geology, 114(4): 697–718.‏ https://doi.org/10.5382/econgeo.4659
Evans, A.M., 1993. Ore geology and industrial minerals: an introduction. John Wiley and Sons, Oxford, United Kingdom, 400 pp. Retrieved July 15, 2020 from https://www.pmf.unizg.hr/_download/repository/ORE_GEOLOGY_AND_INDUSTRIAL_MINERALS.PDF
Frezzotti, M.L., Tecce, F. and Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009
Foose, M.P. and McLelland, J.M., 1995. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu–U–Au–rare earth element) deposits and tectonic implications. Geology, 23(7): 665–668.‏ https://doi.org/10.1130/0091-7613(1995)023<0665:PLTIOD>2.3.CO;2
Frietsch, R., Tuisku, P., Martinsson, O. and Perdahl, J.A., 1997. Early proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews, 12(1): 1–34.‏ https://doi.org/10.1016/S0169-1368(96)00013-3
Fulignati, P., 2018. Hydrothermal fluid evolution in the ‘Botro ai Marmi’quartz-monzonitic intrusion, Campiglia Marittima, Tuscany, Italy. Evidence from a fluid-inclusion investigation. Mineralogical Magazine, 82(5): 1169–1185. https://doi.org/10.1180/mgm.2018.116
Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries: SEG Distinguished lecture. Economic Geology, 87: 1927–1944. Retrieved August 1, 2020 from https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902004813361407
Grondijs, H.‌F. and Schouten, C., 1937. A study of the Mount Isa ores [Queensland, Australia]. Economic Geology, 32(4): 407–450.‏ https://doi.org/10.2113/gsecongeo.32.4.407
Gu, L., Wu, C., Zhang, Z., Pirajno, F., Ni, P., Chen, P. and Xiao, X., 2011. Comparative study of ore-forming fluids of hydrothermal copper–gold deposits in the lower Yangtze River Valley, China. International Geology Review, 53(5–6): 477–498.‏ https://doi.org/10.1080/00206814.2010.533873
Haghipour, A., 1977. Geological Map of the Posht-e-Badam Area, Scale 1: 100,000. Geological Survey of Iran.‏ Retrieved August 5, 2020 from https://catalogue.nla.gov.au/Record/52531
Heidarian, H., Alirezaei, S. and Lentz, D.‌R., 2017. Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews, 83: 43–62.‏ https://doi.org/10.1016/j.oregeorev.2016.11.031
Henriquez, F. and Martin, R.‌F., 1978. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. The Canadian Mineralogist, 16(4): 581–589. Retrieved July 27, 2020 from https://www.researchgate.net/publication/237651949
Hitzman, M.W., Oreskes, N. and Einaudi, M.‌T., 1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu- U- Au- REE) deposits. Precambrian Research, 58(1–4): 241–287.‏ https://doi.org/10.1016/0301-9268(92)90121-4
Houshmandzadeh, A. Sabzehei, M. Ghaemi, J. and Haddadan, M., 2012. Geological map of Ali Abad, scale, 1:25000, Sheet No. 7153 IV SE. Parskani Co. (in Persian)
Keyong, W., Min, Q., Fengyue, S., Duo, W., Li, W. and XiangWen, L., 2010. Study on the geochemical characteristics of ore-forming fluids and genesis of Xiaoxinancha gold-copper deposit, Jilin Province. Acta Petrologica Sinica, 26(12): 3727–3734.‏ Retrieved August 10, 2020 from https://www.researchgate.net/publication/287860941
Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P. and Munizaga, R., 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171: 15–38.‏ https://doi.org/10.1016/j.gca.2015.08.010
Lowenstern, J.‌B., 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36(6): 490–502.‏ https://doi.org/10.1007/s001260100185
Luo, G., Zhang, Z., Du, Y., Pang, Z., Zhang, Y. and Jiang, Y., 2015. Origin and evolution of ore-forming fluids in the Hemushan magnetite–apatite deposit, Anhui Province, Eastern China, and their metallogenic significance. Journal of Asian Earth Sciences, 113(3): 1100–1116.‏ https://doi.org/10.1016/j.jseaes.2014.08.018
Mirzababaei, G., Mehrdad Behzadi, M., Rezvanianzadeh, M.R., Yazdi, M. and Ghannadi Maragheh, M. 2019. Brecciated unit and Th-REE mineralization in the Se-Chahun ore deposit, Bafq mining district, Central Iran. Journal of Economic Geology, 11(1): 105–120. (in Persian with English abstract) https://doi.org/10.22067/econg.v11i1.65876
Morizet, Y., Paris, M., Gaillard, F. and Scaillet, B., 2009. Raman quantification factor calibration for CO–CO2 gas mixture in synthetic fluid inclusions: application to oxygen fugacity calculation in magmatic systems. Chemical Geology, 264(1–4): 58–70. https://doi.org/10.1016/j.chemgeo.2009.02.014
Naranjo, J.A., Henríquez, F. and Nyström, J.O., 2010. Subvolcanic contact metasomatism at El Laco volcanic complex, central Andes. Andean Geology, 37(1):110–120.‏ Retrieved August 10, 2020 from https://www.redalyc.org/pdf/1739/173914377005.pdf
Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer Science and Business Media, Australia, 1273 pp.‏ https://doi.org/10.4067/s0718-71062010000100005
Rajabi, A., Canet, C., Rastad, E. and Alfonso, P., 2015. Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran. Ore Geology Reviews, 64: 328–353.‏ https://doi.org/10.1016/j.oregeorev.2014.07.013
Rajabi, A., Rastad, E., Alfonso, P. and Canet, C., 2012. Geology, ore facies and sulfur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam block, Central Iran. International Geology Review, 54(14): 1635–1648. https://doi.org/10.1080/00206814.2012.659106
Rajabzadeh, M.A., Hoseini, K. and Moosavinasab, Z., 2015. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite. Journal of Economic Geology, 6(2): 331–353. (in Persian with English abstract) https://doi.org/10.22067/econg.v6i2.20956
Ramdohr, P., 1980. The ore minerals and their intergrowths. Elsevier, Oxford, New York, 1205 pp. Retrieved August 20, 2020 from https://www.researchgate.net/publication/284413752
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665. https://doi.org/10.2475/ajs.303.7.622‏‏
Robb, L., 2005. Introduction to ore-forming processes. Blackwell publishing, Malden, 373 pp. Retrieved August 20, 2020 from https://kursatozcan.com/ders_notlari/Introduction_to_Ore_Forming_Processes.pdf
Samani, B., 1993. Saghand formation, a riftogenic unit of upper Precambrian in central Iran. Geosciences: Scientific Quarterly Journal of the Geological Survey of Iran, 2(6): 32–45. (in Persian with English abstract) Retrieved August 20, 2020 from https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&lang=en&idt=6501166
Samani, B.A. 1988. Metallogeny of the Precambrian in Iran. Precambrian Research, 39(1–2): 85–106.‏ ‏https://doi.org/10.1016/0301-9268(88)90053-8
Sepahi, A.‌A. and Miri, M., 2015. Textures of Igneous and metamorphic rocks. Bu-Ali sina University press, Hamedan, 171 pp. (in Persian) Retrieved August 22, 2020 from https://www.researchgate.net/publication/285393053
Shelley, D., 1993. Igneous and metamorphic rocks under the microscope: classification, textures, microstructures and mineral preferred-orientations. Chapman and Hall, London, 445 pp. https://doi.org/10.1017/S0016756800020744
Sheppard, S.M. and Harris, C., 1985. Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water. Contributions to Mineralogy and Petrology, 91(1): 74–81. https://doi.org/10.1007/BF00429429
Shepherd, T.J., Rankin, A.H. and Alderton, D.H., 1985. A practical guide to fluid inclusion studies. Chapman and Hall Blackie, New York, 224 pp. Retrieved August 27, 2020 from https://www.amazon.com/Practical-Guide-Fluid-Inclusion-Studies/dp/0216916461
Taghipour, S., Kananian, A., Harlov, D. and Oberhänsli, R., 2015. Kiruna-type iron oxide-apatite deposits, Bafq district, central Iran: Fluid-aided genesis of fluorapatite-monazite-xenotime assemblages. The Canadian Mineralogist, 53(3): 479–496. https://doi.org/10.3749/canmin.4344‏‏
Taylor, B.E., 1992. Degassing of H2O from rhyolitic magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. In: J.W. Hedenquist (Editors), Magmatic Contributions to Geothermal Systems. Geological Survey of Japan, Tsukuba, Report 279, 190–194. Retrieved May 5, 2020 from https://www.researchgate.net/publication/285082036
Taylor, Jr., H.P., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843–883. https://doi.org/10.2113/gsecongeo.69.6.843
Taylor, Jr., 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: H.L. Barnes (Editors), Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York, pp. 229–302. Retrieved April 22, 2020 from https://www.researchgate.net/publication/288948012
Thompson, A.J.B., Thompson, J.F.H. and Dunne, K.P.E., 1996. Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Canada, 120 pp. Retrieved August 18, 2020 from https://searchworks.stanford.edu/view/3877120
Touret, J.‌L., 1992. CO2 transfer between the upper mantle and the atmosphere: temporary storage in the lower continental crust. Terra Nova, 4(1): 87–98.‏ https://doi.org/10.1111/j.1365-3121.1992.tb00453.x
Torab, F.M., 2008. Geochemistry and metallogeny of magnetite apatite deposits of the Bafq Mining District, Central Iran. Ph.D. Thesis, Technical University of Claustal, Clausthal, Germany, 131 pp. Retrieved July 27, 2020 from https://core.ac.uk/download/pdf/45268823.pdf
Tornos, F., Velasco, F. and Hanchar, J.M., 2016. Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile. Geology, 44(6): 427–430.‏ https://doi.org/10.1130/G37705.1
Wang, Y., Wang, K. and Konare, Y., 2018. N2-rich fluid in the vein-type Yangjingou scheelite deposit, Yanbian, NE China. Scientific Reports, 8(1): 5662. https://doi.org/10.1038/s41598-018-22227-7
Westhues, A., Hanchar, J.M., LeMessurier, M.J. and Whitehouse, M.J., 2017. Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology, 45(6): 571–574.‏ https://doi.org/10.1130/G38894.1
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark, G. and Marschik, R., 2005. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geology, One Hundredth Anniversary Volume. Society of Economic Geologists, Littelton, USA, pp. 371–405.‏ Retrieved June 27, 2020 from https://www.researchgate.net/publication/308527615
Williams, P.‌J. and Blake, K.‌L., 1993. Alteration in the Cloncurry district; Roles of recognition and interpretation in exploration for Cu-Au and Pb-Zn-Ag deposits. Contributions of the Economic Geology Research Unit, Townsville, Queensland, Australia, 72 pp. Retrieved August 26, 2020 from https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6384265
Whitney, D.‌L. and Evans, B.‌W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187.‏ https://doi.org/10.2138/am.2010.3371
Zhaohua, L., Xinxiang, L., Shaofeng, G., Jing, S., Bihe, C., Fan, H. and Zongfeng, Y., 2008. Metallogenic systems on the transmagmatic fluid theory. Acta Petrologica Sinica, 24(12): 2669–2678.‏ Retrieved August 27, 2020 from https://www.researchgate.net/publication/286482625