کاربرد مدل ‌نمایی پراش- مسافت در بررسی‌ های ژئوشیمیایی کانسار روی کالامین (مجتمع معدنی مهدی آباد یزد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

2 گروه زمین شناسی، دانشگاه پیام نور، ایران

3 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه خوارزمی ، تهران، ایران

4 گروه مهندسی ژئوفیزیک، دانشکده مهندسی، دانشگاه آنکارا، آنکارا، ترکیه

5 گروه زمین شناسی، شرکت مهندسین مشاور زمین آب پی، تهران، ایران

چکیده

معدن روی- سرب کالامین (مهدی ­آباد، یزد، ایران مرکزی)، یک رخنمون اقتصادی غیرسولفیدی با منشأ رسوبی- آتشفشانی است که بر اساس سوابق اکتشافی منطقه، از ویژگی­ های زمین ­شناختی و ژئوشیمیایی متناسب با محیط ­های سوپرژن برخوردار است. در این پژوهش، از سه رهیافت رگرسیون خطی، توزیع پواسونی و تغییرات بعد فرکتال برای بازبینی توزیع­ های ژئوشیمیایی و معرفی اولویت­ های اکتشافی منطقه مورد بررسی استفاده‌ شده است. مقایسه ضرایب رگرسیون خطی و توزیع پواسونی عناصر مختلف، بیانگر تمایل نسبی آنها به توزیع غیرخطی است. بنابراین از مدل ‌نمایی پراش- مسافت برای دستیابی به تغییرات بعد فرکتالی 13 عنصر شاخص و ردیاب ذخایر‌ برون‌دمی استفاده شده است. تعیین سطح توزیع براونی هر عنصر، ملاک هندسی جدیدی است که با فرایند خودساماندهی ژئوشیمیایی در سامانه­ های ماگمایی، گرمابی و آتشفشانی سازگاری دارد. در پیش ­بینی به روش فرکتال، از الگوی ناحیه ­بندی ترکیبی شامل 10 عنصر با سطوح آرمانی و 3 عنصر با سطوح نزدیک به سطح براونی برای معرفی اولویت ­های اکتشافی منطقه استفاده شده است. نتایج پژوهش نشان می­ دهند که عناصر آرسنیک، روی و آنتیموان از سطوح توزیع براونی مطلوب (FD>2 3>) برای تولید مؤلفه ­های متناظر (عیارهای متناظر) برخوردارند. تغییرات بعد فرکتالی سرب، مس، نقره و گوگرد از نوع محدود، اما قابل برازش با سطوح براونی آرسنیک، روی و آنتیموان بوده و بیانگر ناحیه ­بندی ژئوشیمیایی متناسب با فرایند غنی­ شدگی در عمق رخساره­ های دگرسانی است. لذا بر اساس نقشه پیش­ داوری مبتنی بر تحلیل ­های واریوفرکتالی، امکان دستیابی به ذخایر هیپوژنیک در برخی از اهداف اکتشافی منطقه کالامین وجود دارد.

کلیدواژه‌ها


Abdoli-Sereshgi, H., Ganji, A., Ashja-Ardalan, A., Torshizian, H. and Taheri, J. 2019. Detection of metallic prospects using staged factor and fractal analysis in Zouzan region, NE Iran. Iranian Journal of Earth Sciences, 11(4): 256–266. Retrieved October 16, 2019 from http://ijes.mshdiau.ac.ir/article_669400.html
Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P. and Rashidnejad-Omran, N., 2011. Delineation        of mineralization zones in porphyry Cu deposits by fractal concentration-Volume modeling. Journal of Geochemical Exploration, 108(3): 220–232. https://doi.org/10.1016/j.gexplo.2011.03.005
Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S. and Daneshvar-Saein, L. 2019. Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran). Journal of Mining and Environment, 10(3): 705–715. https://doi.org/10.22044/jme.2019.8107.1678
Agterberg, F.P., 2012. Multifractals and geostatistics. Journal of Geochemical Exploration, 122: 113–122. https://doi.org/10.1016/j.gexplo.2012.04.001
Akbari, E. and Mehrnia, R., 2013. Association of Silica Fractal Distribution with Gold Mineralization: a case study from the Takmeh-Dash Region, NW of Iran. Quarterly Journal of Tethys, 1(4): 241–253. Retrieved November 28, 2013 from http://journals.pnu.ac.ir/article_2773.html
Alipour-Shahsavari, M., Afzal, P. and Hekmatnejad, A. 2020. Identification of geochemical anomalies using fractal and LOLIMOT neuro-fuzzy modeling in Mial area, Central Iran. Journal of Mining and Environment, 11(1): 99–117. https://doi.org/10.22044/jme.2019.8465.1727
Bölviken, B., Stokke, P.R., Feder, J. and Jössang, T., 1992. The fractal nature of geochemical landscapes. Journal of Geochemical Exploration, 43(2) :91–109. https://doi.org/10.1016/0375-6742(92)90001-O
Bonham-Carter, G.F., 1998. Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, Oxford, 398 pp.
Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3–4): 383–400. https://doi.org/10.1016/j.oregeorev.2009.01.001
Carranza, E.J.M., Owusu, E.A. and Hale, M., 2009. Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44(8): 915–938. https://doi.org/10.1007/s00126-009-0250-6
Carranza, E.J.M. and Sadeghi, M., 2010. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38(3): 219–241. https://doi.org/10.1016/j.oregeorev.2010.02.003
Chen, G., Cheng, Q. and Zuo, R., 2016. Fractal analysis of geochemical landscapes using scaling noise model. Journal of Geochemical Exploration, 161: 62–71. https://doi.org/10.1016/j.gexplo.2015.11.003
Cheng, Q., Xu, Y. and Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research 9(1): 43–51. https://doi.org/10.1023/A:1010109829861
Cheng, Q., Xia, Q., Li, W., Zhang, S., Chen, Z., Zuo, R. and Wang, W., 2010. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences, 7(10): 3019–3025. https://doi.org/10.5194/bg-7-3019-2010
Daneshvar-Saein, L., 2017. Delineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran. Iranian Journal of Earth Sciences, 9(1): 64–74. Retrieved January 3, 2017 from https://www.sid.ir/en/journal/ViewPaper.aspx?ID=542407
Davis, J.C., 2002.  Statistics and data analysis in geology. John Wiley and Sons Inc, New York, 638 pp.
Ebrahim-Mohseni, M., 2011. Study of genesis of Mehdiabad deposit using fluid inclusion and stable isotope. Unpublished M.Sc. Thesis, Damghan University, Damghan, Iran, 166 pp.
Farahmandfar, Z., Jafari, M.R., Afzal, P. and Ashja Ardalan, A., 2020. Description of gold and copper anomalies using fractal and stepwise factor analysis according to stream sediments in NW Iran. Geopersia, 10(1): 135–148. https://doi.org/10.22059/geope.2019.265535.648413
Grigoryan, S.V., 1974. Primary geochemical halos in prospecting and exploration of hydrothermal deposits. International Geology Review, 16)1(: 12–25. https://doi.org/10.22059/geope.2019.265535.648413
Hashemi-Marand, Gh., Jafari, M.R., Afzal, P. and Khakzad, A., 2018. Determination of relationship between silver and lead mineralization based on fractal modeling in Mehdiabad Zn-Pb-Ag deposit, Central Iran. Geosciences, 27(106): 111–118. https://doi.org/10.22071/gsj.2018.58371
Hassani-Pak, A.A., 2012. Principles of geochemical exploration. University of Tehran Publication, Tehran, 615 pp. (in Persian)
Koosha Mining Company, 2018. Prepared Geological map 1:1000 Calamine mine, Yazd. Mehdiabad Mining Complex.
Luz, F., Mateus, A., Matos, J.X. and Goncalves, M.A., 2014. Cu-and Zn-soil anomalies in the NE border of the south Portuguese zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23(2): 195–215. https://doi.org/10.1007/s11053-013-9217-5
Maghfouri, S., 2017. Geology, Geochemistry, Ore Controlling Parameters and Genesis of Early Cretaceous Carbonate-clastic Hosted Zn-Pb Deposits in Southern Yazd Basin, with Emphasis on Mehdiabad Deposit. Unpublished Ph.D. Thesis, Tabriz University, Tabriz, Iran, 475 PP.
Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W.‌H. Freeman, San Fransisco, 468 pp.
Mark, D.M. and Aronson, P.B., 1984. Scale-Dependent Fractal Dimensions of Topographic Surfaces: An Empirical Investigation, with Applications in Geomorphology and Computer Mapping. Journal of the International Association for Mathematical Geology, 16(7): 671–683.  https://doi.org/10.1007/BF01033029
Mehrnia, S.R., 2009. Using Fractal Filtering Technique for Processing ETM Data as Main Criteria for Evaluating of Gold Indices in North West of Iran. International Conference on Computer Technology and Development, ICCTD, Kota Kinabalu, Malaysia. https://doi.org/10.1109/ICCTD.2009.29
Mehrnia, S.R., 2013. Application of fractal geometry for recognizing the pattern of textural zoning in epithermal deposits (case study: Sheikh-Darabad Cu-Au indices, East-Azarbaijan province). Journal of Economic Geology, 5(1): 23–36. (in Persian with English abstract) https://doi.org/10.22067/econg.v5i1.22885
Mehrnia, S.R., 2017. Application of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak). Journal of Economic Geology, 8(2): 325–342. (in Persian with English abstract) https://doi.org/10.22067/econg.v8i2.42454
Mehrnia, S.R., Ebrahimzadeh-Ardestani, V. and Teymoorian-Motlagh, A., 2013. Application of fractal method to determine the Bouguer density of Charak Region (South of Iran). Iranian Journal of Geophysics, 7(1): 34–50. http://www.ijgeophysics.ir/article_40598.html?lang=en
Morison, G., 2003. AMIRA Project, Revised version: Evaluating of Gold Mineralization Potentials in Queensland Epithermal Systems, Queensland J.C Univ. press, Queensland, Australia, 249 pp.
Parsa, M., Maghsoudi, A. and Ghezelbash, R., 2016. Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences, 9(260): 1–16. https://doi.org/10.1007/s12517-016-2435-5
Pourfaraj, H., 2016. Structural analysis of fault systems in Mehdiabad Zn-Pb Mine area, SE Yazd. Unpublished M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 192 pp.
Reichert, J., Borg, G. and Rashidi, B., 2003. Mineralogy of calamine ore from the Mehdi Abad zinc-lead deposit, Central Iran. 7th Biennial Meeting, Society for Geology Applied to Mineral Deposits; Mineral exploration and sustainable development, Athens, Greece. Retrieved December 16, 2003 from https://www.tib.eu/en/search/id/BLCP%3ACN057745834/Mineralogy-of-calamine-ore-from-the-Mehdi-Abad/
Soltani, F., Moarefvand, P., Alinia, F. and Afzal, P. 2020. Detection of Main Rock Type for Rare Earth Elements (REEs) Mineralization Using Staged Factor and Fractal Analysis in Gazestan Iron-Apatite Deposit, Central Iran. Geopersia, 10(1): 89–99. https://doi.org/10.22059/geope.2019.279698.648474
Teymoorian-Motlagh, A., Ebrahimzadeh-Ardestani, V. and Mehrnia, R., 2012. Fractal method for                  determining the density of the stone tablet in Charak region (southern Iran). Life Science Journal.    9(4): 1913–1923.  https://doi.org/ 10.7537/marslsj090412.290
Thorarinsson, F. and Magnusson, S.G., 1990. Bouguer density determination by fractal analysis. Geophysics, 55(7): 932–935. https://doi.org/10.1190/1.1442909
Wang, Q., Deng, J., Liu, H., Wang, Y., Sun, X. and Wan, L., 2011. Fractal models for estimating local reserves with different mineralization qualities and spatial variations. Journal of Geochemical Exploration, 108(3): 196–208. https://doi.org/10.1016/j.gexplo.2011.02.008
Wei, Sh. and Pengda, Zh., 2002. Theoretical study of statistical fractal model applications to mineral resource prediction. Computers and Geosciences, 28(3): 369–376. https://doi.org/10.1016/S0098-3004(01)00052-8
Zuo, R., and Wang, J., 2016. Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164: 33–41. https://doi.org/10.1016/j.gexplo.2015.04.010
Zuo, R., Carranza, E.J.M. and Wang, J., 2016. Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158: 9–18. https://doi.org/10.1016/j.earscirev.2016.04.006