تکامل ماگمایی- گرمابی سیال کانه‌ دار در کانسار مس- طلای پورفیری دالی با استفاده از شیمی‌ کانی‌ های آمفیبول و پلاژیوکلاز

نوع مقاله : علمی- پژوهشی

نویسندگان

1 شهید چمران اهواز

2 شهرکرد

چکیده

کانسار مس- طلای پورفیری دالی در غرب روستای راوه، شهرستان دلیجان و در بخش مرکزی کمربند ماگمایی ارومیه- دختر قرار دارد و ناشی از نفوذ توده‌هایی با ترکیب دیوریت و کوارتز دیوریت به سن میوسن در سنگ‌های آتشفشانی با ترکیب آندزیت تا آندزیت بازالت پورفیری الیگو- میوسن است. دگرسانی‌های پتاسیک، آرژیلیک، پروپلیتیک و به‌‌طور محلی فیلیک باعث افزایش شدت کانه‌زایی در بعضی مناطق شده‌اند. هدف از این پژوهش، بررسی ترکیب شیمیایی کانی‌های مؤثر بر کانه‌زایی و تکامل سیال کانه‌دار در ماگمای مولد و تأثیر آن در توان کانه‌زایی کانسار مورد نظر است. برای این منظور کانی‌های آمفیبول و پلاژیوکلاز در سنگ‌های کانه‌دار با استفاده از روش ریز‌پردازش الکترونی مورد بررسی قرار گرفتند و داده‌های به‌‌دست ‌آمده با بررسی میان‌بارهای سیال در رگه‌های دخیل در کانه‌زایی تلفیق شدند. نتایج حاصل از بررسی‌های ریز‌پردازش الکترونی1 نشان داد که آمفیبول‌های ماگمایی، از نوع کلسیک و در گستره منیزیو هورنبلند، ادنیت، منیزیو هستینگزیت و چرماکیت است. همچنین پلاژیوکلازها در گستره آندزین و لابرادوریت هستند. با توجه به دما– فشار سنجی، آمفیبول‌ها در فشار 5/3 تا 3/5 کیلوبار و دمای 818 تا 899 درجه سانتی‌گراد در محیطی با گریزندگی اکسیژن بالا و در شرایط اکسیدان شکل‌گرفته، این شرایط زمینه را برای حمل و انتقال مس و طلا فراهم می‌کند و بیانگر شرایط ماگمایی، ماگمای مادر پورفیری دالی است. نتایج به‌دست آمده از داده‌های ریز‌دماسنجی سیال درگیر مربوط به رگه‌های نابارور اولیه همراه با دگرسانی پتاسیک میزان دمای340-620 درجه سانتی‌گراد، شوری 35-75% درصد وزنی را نشان می دهد که با توجه به دمای آمفیبول‌ها این افت دما بیانگر تغییر از شرایط ماگمایی به گرمابی و آغاز فرآیندهای کانه‌زایی در این کانسار است.

کلیدواژه‌ها


Alai, Mahabadi, S., Kohansal, R., Ghomian, Y. and Soltani, M.V., 2000. Geological map of SALAFCHEGAN- KHORHE, scale 1:100,000. Geological Survey of Iran.
Almeev, R.R. and Ariskin, A.A., 1996. Mineral-melt equilibria in a hydrous basaltic system: computer modeling. Geochemistry International, 34(7): 563-573.
Anderson, J.L. and Smith, D.R., 1995. The effects of temperature and fO2 on the Al- in hornblende barometer. American Mineralogist, 80(5-6): 549–559.
Asadi, F., 2015. The Investigation characteristics of Physico-Chemical of the fluid inclusions at the Dalli Cu-Au porphyry deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University, Ahvaz, Iran, 118 pp. (in Persian with English abstract)
Asadi Harouni, H., 2010. Final exploration report at Dalli Cu–Au deposit. Unpublished report (Industry, Mine and Trade of Central Province), Central Province, Report DP-01, 40 pp.
Ayati, F., Noghreyan, M.K. and Khalili, M., 2012. Petrographic and mineral-chemistry of the magmatic-alteration zones South of Salafchegan. Petrology, 2)8(: 1-20. (in Persian with English abstract)
Ayati, F., Yavuz, F., Asadi Harouni, H., Richards, J.P. and Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2): 158-184.
Blundy, J.D. and Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208-224.
Camus, F., 2005. The Andean porphyry systems. In: T.M. Porter (Editor), Super Porphyry Copper & Gold Deposits - A Global Perspective. PGC Publishing, Adelaide, pp. 45-63.
Chivas, A.R., 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contributions to Mineralogy and Petrology, 78(4):389-403.
Cloos. M., 2001. Bubbling Magma Chambers, Cupolas and Porphyry Copper Deposits. International Geology Reviwe, 43(4): 285-311.
Coltorti, M., Bondaiman, C., Faccini, B., Gregoire, M., O’Reilly, S.Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1-2): 68-84.
Dachs E., 2004. PET: Petrological elementary tools for Mathematica an update. Computers and Geoscience, 30(2):173-182.
Daneshjou, M., 2014. Geology, Geochemistry and Gensis model of the Dalli Cu-Au Porphyry Deposit, Delijan, Markazi province. M.Sc. Thesis, Shahid Chamran University, Ahvaz, Iran, 141 pp. (in Persian with English abstract)
Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A., 2007. Amphibole "sponge" in arc crust? Geology, 35(9): 787–790.
Deer, W.A., Howie, R.A. and Zussman, J., 1991. An introduction to rock forming mineral. Longman, London, 787 pp.
Eugster, H.P. and Wones, D.R., 1963. Stability Relations of the Ferruginous Biotite, Annite. Journal of Petrology, 3(1): 82–125.
Ewart, A., 1979. A review of the mineralogy and chemistry of tertiary recent dacitic, latitic, rhyolitic and related salic volcanic rocks. In: B. Fred (Editor), Trondhjemites, dacites, and related rocks. Springer- Verlag, Berlin, pp. 12–101.
Frost, B.R., 1991. Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25: 1–9.
Giret, A., Bonin, B. and Leger, J.M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Mineralogist, 18(4): 481–495.
Hammarstrom, J.M. and Zen, E., 1986. Aluminum-in-hornblende: an empirical igneous geobarometer. American Mineralogist, 71(11-12): 1297-1313.
Helmy, H.M., Ahmed, A.F., El Mahallawi, M.M. and Ali, S.M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic Implication. Journal of African Earth Science, 38(3): 255-268.
Hendry, D.A.F., Chivas, A.R., Long, J.V.p. and Reed, S.J.B., 1985. Chemical differences between minerals from mineralizing and barren intrusions from some North American prophyry copper deposits. Contributions to Mineralogy and Petrology, 89(4): 317-329.
Hezarkhani, A., 2006. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: Evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6): 409–422.
Hirschmann, M.M., Ghiorso, M.S., Davis, F.A., Gordon, S.M., Mukherjee, S., Grove, T.L., Krawczynski, M., Medard, E. and Till, C.B., 2008. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics, Geosystems, 9(3): 1–15.
Holland, T.J.B. and Blundy, J.D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole- plagioclase thermometry. Contributions to Mineralogy and Petrology, 116: 433-447.
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4): 231-239.
Jiang, C.Y. and An, S.Y., 1984. On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 03: 1–9. (in Chinese with English abstract)
John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Robert, J., Bodnar, J.H., Dilles, F.G., Fred T. Graybeal, John L., Mars, D.K., McPhee, R., Seal, Ryan D., Taylor. and Peter G. Vikre., 2010. Porphyry Copper Deposit Model, Chapter B of Mineral Deposit Models for Resource Assessment. U.S. Geological Survey, U.S.A, Report 2010–5070 B, 166 pp.
Johnson, M.C. and Rutherford, M.J., 1989. Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837–841.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 35(1): 219– 246.
Li, S.R. and Santosh, M., 2014. Metallogeny and craton destruction: records from the North China Craton. Ore Geology Reviews, 56: 376–414.
Li, S.R., Santosh, M., Zhang, H.F., Luo, J.Y., Zhang, J.Q., Li, C.L., Song, J.Y. and Zhang, X.B., 2014. Metallogeny in response to lithospheric thinning and craton destruction: geochemistry and U–Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geology Reviews, 56: 457–471.
Müntener, O., Kelemen, P.B. and Grove, T.L., 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology, 141(6): 643–658.
Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283(10): 993-1033.
O’Neill, H.S.C. and Pownceby, M.L., 1993. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-‘FeO’, Co-CoO, Ni-NiO, and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114(3): 296–314.
Pirajno, F., 1992. Hydrothermal mineral deposits. Springer Verlag, Berlin Heidelberg, 703 pp.
Pletchov, P.Y. and Gerya, T.V., 1998. Effect of H2O on plagioclase-melt equilibrium. Experiment in Geosciences, 7(2): 7-9.
Preston, J. and Still, J., 2001. Mineral chemistry Spreadsheet V 15. Electronic internet publication, www.earth.ox.ac.uk/~davewa/pt/tools/formula.xls
Putirka, K.A., 2005. Igneous thermometers and barometers based on plagioclase plus liquid equilibria: tests of some existing models and new calibrations. American Mineralogist, 90(2-3): 336-346.
Rezaei, M., Zarasvandi, A., Azimzadeh, A.M. and Pourkaseb, H., 2015. Fluid inclusion petrography evaluation of Dalli porphyry copper-gold deposit using laser Raman spectroscopy analysis. 18th Symposium of the Geological Society of Iran, Tarbiat Modares University of Tehran, Tehran, Iran. (In Persian with English abstract)
Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533.
Richards, J.P., 2005. Cumulative Factors in the Generation of Giant Calc-Alkalan Porphyry Cu Deposits. In: T.M. Porter (Editor), Super Porphyry Copper & Gold Deposits - A Global Perspective. PGC Publishing , Adelaide, pp. 7-25.
Richards, J.P., 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250.
Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66.
Rowins, S.M., 2000. Reduced porphyry copper-gold deposits: A new variation on an old theme. Geology, 28(6): 491-494.
Schmidt, M.W., 1992. Amphibole composition intonalite as a function of pressure: An experimental calibration of the Al-in-hornblende baromete. Contributions to Mineralogy and Petrology, 110(2): 304-310.
Sillitoe, R.H., 1972. A Plate Tectonic Model for the Origin of Porphyry Copper Deposits. Economic Geology, 67(2): 184-197.
Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41.
Smith, J.V. and Brown, W.L., 1988. Feldspar Minerals. Crystal structures, physical, chemical, and microstructural properties. Springer-Verlag, New York. 809 pp.
Stein, E. and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1): 185–207.
Sun, W., Huang, R.F., Li, H, Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., Zartman, R.E. and Ling. M.X., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97–131.
Titley, S.R. and Beane, R.E., 1981. Porphyry copper deposits. Part 1. Geologic Setting, Petrology, and Tectogenesis. In: J.W.
Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geologists, 75th Anniversary Volume. Society of Economic Geologists, U.S.A, pp. 214-234.
Wang, R., Richards, J.P., Hou, Z.Q., Yang, Z.M., Gou, Z.B. and DuFrane, A., 2014. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo ±Au Mineralization. Economic Geology, 109(7): 1943–1965.
Whitney, J.A., 1975. Volatiles in magmatic systems, in Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology, 1: 155-175.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187.
Whitney, J.A. and Storme jr, J.C., 1985. Mineralogy, petrology, and magmatic conditions from the Fish Canyon Tuff, central San Juan volcanic field, Colorado. Journal of Petrology, 26(3): 726-762.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55: 229-272.
Yoder, H.S. and Tilley, G.E., 1962. Origion of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology, 3(3): 342-532.
Zarasvandi, A. and Liaghat, S., 2005. Discrimination of Productive and Nonproductive Porphyritic Intrusions in the South of Khezr-Abad area, Yazd: Using by REE Geochemistry. Proceeding of 9th symposium of Geological Society of Iran, Kharazmi University of Tehran, Tehran, Iran. (In Persian with English abstract)
Zarasvandi, A., Rezaei, M., Sadeghi, M., Lentz, D., Adelpour, M. and Pourkaseb, H., 2015a. Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran. Ore Geology Reviews, 70: 407-423.
Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D., Azimzadeh, A.M. and Pourkaseb, H., 2015b. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. Journal of Asian Earth Sciences, 111: 175-191.
Zhong, J., Chen, Y., Pirajno, F., Chen, J., Li, J., Qi, J. and Li, N., 2014. Geology, geochronology, fluid inclusion and H–O isotope geochemistry of the Luoboling Porphyry Cu–Mo deposit, Zijinshan Orefield, Fujian Province, China. Ore Geology Reviews, 57: 61–77.
CAPTCHA Image