ترکیب سیالات گرمابی در کانسار مس پورفیری کهنگ (شمال شرق اصفهان) با کمک داده‌های کانه‌ نگاری، سیالات درگیر و ایزوتوپ‌ های پایدار

نوع مقاله : علمی- پژوهشی

نویسندگان

1 اصفهان

2 صنعتی اصفهان

3 پیام نور واحد شهرکرد

چکیده

کانسار مس پورفیری کهنگ در شمال شرق اصفهان و بر روی کمربند آتشفشانی ارومیه- دختر واقع شده است. این کانسار در ارتباط با استوک‌های گرانیتوئیدی میوسن است که به درون سنگهای آتشفشانی و آذرآواریهای ائوسن تزریق شده است. رخ داد سه پهنه دگرسانی اصلی شامل دگرسانی فیلیک (سرسیت، کوارتز، پیریت)، آرژیلیک (کائولینیت، ایلیت، ژاروسیت، تورمالین)‌ و پروپیلیتیک (کلسیت، کلریت و اپیدوت) در این منطقه به تأثیر سیالات گرمابی در منطقه اشاره دارد. زون‌ها و کانیهای تشخیص داده شده در منطقه شامل سه زون اکسید (هماتیت، گوتیت، ژاروسیت، مالاکیت و آزوریت)، غنی شده سوپرژن (کالکوپیریت، کالکوسیت و کوولیت) و هیپوژن (کالکوپیریت، پیریت و مگنتیت) است. بررسیهای سیالات درگیر نشان می‌دهد که تزریق توده‌ مولد کانه‌زایی در منطقه کهنگ در چندین فاز مختلف انجام شده که هر کدام باعث ایجاد سیالات مولد کانه‌زایی خاص خود شده‌اند. یکی از این سیالات با دمای میانگین ˚C330 و شوری بیش از 26 تا 47 درصد وزنی NaCl باعث رخ‌داد دگرسانی فیلیک در منطقه‌ کهنگ شده است. میزان مقادیر ایزوتوپی اکسیژن برای نمونه‌های کوارتز بررسی شده از 79/8 تا ‰ 1/10 در تغییر است. مقادیر O18δ محاسبه شده برای سیالاتی که در تعادل با این نمونه‌ها بوده‌اند، 9/2 تا ‰ 2/4 است. دامنه‌ تغییرات ترکیب ایزوتوپی هیدروژن در نمونه‌های کوارتز گرمابی کانسار کهنگ از 5/115- تا ‰ 62- است؛ در حالی‌که این نسبت در نمونه‌ اپیدوتی معادل ‰ 3/75- بوده و میزان δD محاسبه شده برای سیالاتی که باعث دگرسانی پروپیلیتیک شده‌اند، ‰ 43- است. به‌طور کلی بررسی ایزوتوپ‌های پایدار در سیستم مس پورفیری کهنگ مشابه با سایر سیستم‌های مس پورفیری جهان، اختلاط آبهای جوی و ماگمایی در بخشهای حاشیه‌ای کانسار کهنگ (منطبق بر پهنه پروپیلیتیک) را تأیید می‌کند.

کلیدواژه‌ها


Afshooni, S.Z., Esmaeily, D. and Asadi Haroni, H., 2014. Stable isotopes (S, H, O) study In phyllic and potassic- phyllic alteration zones of the Kahang porphyry copper- Molybdenum deposit (Northeast of Isfahan). Journal of Advanced Applied Geology, 1(7): 64-73. (in Persian)
Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran, new data and interpretations. Tectonophysics, 229(3-4): 211-238.
Alpers, C.N. and Brimhall, G.H., 1989. Paleohyrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, Northern Chile. Economic Geology, 84(2): 229-255.
Amidi, S.M., 1975. Contribution a'letude stratigraphique, petrologique et petrographique des roches magmatiques de la region Natanz-Nain-Surk (Iran central). Ph.D. Thesis, University of Grenoble France, Grenoble, France, 316 pp.
Asadi, H., 2007. Detailed exploration in Kahang porphyry Cu- Mo index. Dorsa pardazeh company, Isfahan, Report 3, 114 pp (in Persian).
Asghari, O. and Hezarkhani, A., 2010. Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit, NW Iran. Bulletin of The Mineral Research and Exploration, 140(4): 19-34.
Ayati, F., 2010. Neogene magmatism and their related hydrothermal alterations in NE of Arak. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 340 pp (in Persian with English abstract).
Ayati, F., Asadi Harouni, H., Bagheri, H. and Mansouri Isfahani, M., 2012. Application of mineralography and fluid inclusion data to determine the formation conditions of porphyry copper deposit, NE Arak. Petrology, 3(12): 15-32 (in Persian with English abstract).
Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21(7): 767-780.
Calagari, A.A., 2004. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23(2): 179-189.
Clayton, R.N., O΄Neil, J.R. and Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysics Research, 77 (17): 3057-3067.
Cunningham, C., 1978. Pressure gradients and boiling as mechanisms for localizing ore in porphyry system. Journal of Research of the U.S. Geological Survey, 6(4): 745-754.
Farahani Farmahini, M., 2008. Geology, geochemistry and mineralogy investigations of Kahang index. Ph.D. Thesis, Islamic Azad University Science and Research Branch, Tehran, Iran, 200 pp (in Persian with English abstract).
Forster, H., 1974. Continental drift in Iran in relation to the Afar structures. International Symposium on the Afar Region and Related Rift Problems, Bad Bergzabern, Germany.
Guilbert, J.M. and Park, Jr.C.F., 1997. The geology of ore deposits. Freeman and company, New York, 985 pp.
Hatami, Sh., 2008. Petrology of Kahang granitoids and volcanic rocks with emphasis on mineralization and alteration zones. M.Sc. Thesis, Islamic Azad University Khorasgan Branch, Isfahan, Iran, 110 pp (in Persian with English abstract).
Hezarkhani, A., 2006. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran: Evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6): 409-422.
Hezarkhani, A., 2009. Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3): 254-264.
Karimpour, M.H. and Saadat, S., 2002. Applicable economic geology. Mashhad University Publications, Mashhad, 535 pp (in Persian).
Kertz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 227-279.
Komeili, S.S., 2010. Petrology and geochemistry of the Kahang porphyry Cu- Mo index and related hydrothermal alteration zones. M.Sc. Thesis, University of Isfahan, Isfahan, Iran, 189 pp (in Persian with English abstract).
Mehrpartou, M. and torkiyan, M., 1993. Research of fluid inclusions in the Sungun porphyry copper- Molybdenum deposit (west of Ahar- Azarbayjan-e gharbi). Geosciences, 3(10): 2-27 (in Persian).
Mehvari, R., Shamsipour, R., Bagheri, H., Noghreyan, M. and Mackizadeh M.A., 2010. Mineralogical and fluid inclusion studies in the Kalchueh copper- gold deposit, Earth of Isfahan. Journal of Economic Geology, 1(1): 47-55 (in Persian with English abstract).
Morales Ruano, S., Both, R.A. and Golding, S.D., 2002. A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system. Chemical Geology, 192(3-4): 211-226.
Radfar, J. and Kohansal, R., 2002. Geological map of Iran (Kuhpayeh), scale 1:100,000. Geological Survey and Mineral Exploration of Iran.
Roedder, E., 1972. Composition of fluid inclusions. In: M. Fleischer, (Editor), Data of geochemistry. United States Government printing office, Washington, pp. i-JJ189.
Shahabpour, J., 1994. Post-mineralization breccia dike from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology, 3(1): 39-43.
Shahabpour, J., 2000. Some sulfide- silicate assemblages from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Journal of Sciences, Islamic Republic of Iran, 11(1): 39-48.
Sheppard, S.M.F., 1977. Identification of the origin of ore-forming solutions by the use of stable isotopes, in volcanic processes, in ore genesis. Geological Society of London, 7(1): 25-41.
Sheppard, S.M.F., 1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy, 16(1): 165–183.
Takenouchi, S., 1980. Preliminary studies of fluid inclusions of the Santo Tomas II (Philex) and Tapian (Marcopper) porphyry copper deposits in the philippines. Mining Geology Special Issue, 8(9-10): 141-150.
Ulrich, T., Günther, D. and Heinrich, C.A., 2002. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 97(8): 1889-1920.
Van den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1-4): 27-47.
Vink, B.W., 1986. Stability relations of malachite and azurite. Mineralogical Magazine. 50(355): 41-47.
Walshe, J.L. and Hobbs, B.E., 1999. Hydrothermal systems, giant ore deposits and a new paradigm for predictive mineral exploration. CSIRO Exploration and Mining, North Ryde (Australia), 133 pp.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55 (1-4) 229-272.
Zhong, J., Chen, Y.J., Pirajno, F., Chen, J., Li, J., Qi, J.P. and Li, N., 2014. Geology, geochronology, fluid inclusion and H-O isotope geochemistry of the Louboling Porphyry Cu-Mo deposit, Zijinshan Orefield, Fujian Province, China. Ore Geology Reviews, 57(1): 61-77.
CAPTCHA Image