زمین‌ شیمی گدازه‌ های بالشی و کلینوپیروکسن موجود در آنها: افیولیت ملانژهای نایین و عشین (شمال‌ شرقی استان اصفهان)

نوع مقاله : علمی- پژوهشی

نویسندگان

1 اصفهان

2 آزاد اسلامی واحد علوم و تحقیقات

چکیده

افیولیت‌‌های نایین و عشین در شمال شرقی استان اصفهان و در غرب خرده قاره شرق - ایران مرکزی قرار گرفته‌اند. گدازه‌های بالشی از مهمترین واحدهای تشکیل‌دهنده آنها با سن کرتاسه هستند. درجه ذوب‌بخشی کمتر پریدوتیت‌های گوشته در افیولیت عشین و مذاب حاصل از ذوب کلینوپیروکسن آنها موجب بازیک‌تر و غنی‌تر شدن گدازه‌های بالشی عشین و درجه ذوببخشی بالاتر و ذوب نامتجانس ارتوپیروکسن و در نتیجه افزوده شدن سیلیس به مذاب در حال صعود موجب تشکیل مذابهای اسیدی‌تر (آندزیت تا بازالت آندزیتی) و تهی‌شده‌تر (از نظر عناصر کمیاب)‌ در افیولیت نایین شده است. میزان REE نمونه‌های سنگ‌کل نایین بیشترین شباهت شیمیایی را با نمونه‌های IAT دارند اما نمونه‌های عشین ترکیب MORB را نشان می‌دهند. با توجه به شواهد پتروگرافی، مقدار کم نسبت Eu/Eu* در فنوکریستال‌های کلینوپیروکسن‌ عشین و مقادیر محاسبه شده Kd کلینوپیروکسن و غنی‌شدگی عناصر نادر خاکی سنگین در ترکیب مذاب در حال تعادل با کلینوپیروکسن (به‌ویژه در منطقه عشین)، تبلور پلاژیوکلاز نسبت به کلینوپیروکسن در منطقه عشین نسبت به نایین تقدم و شدت بالاتری داشته و در نتیجه، مذاب در حال تعادل با کلینوپیروکسن در عشین ماهیتی شبیه ترکیب MORB و در نایین شبیه به IAT نشان می‌دهد. بنابراین، علی‌رغم مجاورت این دو مجموعه افیولیتی و برخی شباهتهای صحرایی و پتروگرافی، گدازه‌های بالشی این دو مجموعه افیولیتی هم از لحاظ ترکیب مذاب اولیه و هم از نظر فرآیندهای تفریق و محیط تشکیل با هم متفاوت هستند.

کلیدواژه‌ها


[1] دروﻳﺶ‌زاده ع.، "زﻣﻴﻦ‌ﺷﻨﺎﺳی ﭘﻮﺳﺘﻪ اﻗﻴﺎﻧﻮﺳی: پترولوژی و دینامیک درونی"، تألیف تیری ژوتو و رنه موری، اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان، (1381) 560 ص.
[2] Dilek Y., Moores E., Elthon D., Nicolas A., “Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program”, Geological Society of America, Special Paper 349 (2000) 552 p.
[3] Shirdashtzadeh N., Torabi G., Arai. S., “Two distinct magmatism phases in Mesozoic of Central Iran based on the study of metabasic rocks Naein and Ashin-Zavar ophiolitic melanges, (Isfahan Province, Central Iran)”, Ofioliti 36 (2011) 191-205.
[4] جباری ع.، "زمین‌شناسی و پترولوژی افیولیت نایین"، پایان‌نامه کارشناسی ارشد پترولوژی، دانشگاه اصفهان (1376) 163 ص.
[5] ترابی ق.، "پترولوژی افیولیت‌های منطقه انارک (شمال شرق استان اصفهان)"، پایان‌نامه دکتری پترولوژی، دانشگاه تربیت مدرس (1383) 240 ص.
[6] ترابی ق.، عبداللهی ا.، شیردشت‌زاده ن.، "کاربرد آنالیز کانیها و سنگ کل در شناسایی سنگ‌زایی گدازه‌های بالشی افیولیت نایین"، مجله بلورشناسی و کانی شناسی ایران، شماره 16 (1387) ص 295-312.
[7] شیردشت‌زاده ن.، "پترولوژی گدازه‌های بالشی و آمفیبولیت‌ها و دگرگونی در پریدوتیت‌های گوشته افیولیت‌های نایین و عشین"، پایان‌نامه دکتری پترولوژی دانشگاه اصفهان، (1393) 345 ص.
[8] Leterrier J., Maury R. C., Thonon P., Girard D., Marchal M., “Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series”, Earth and Planetary Science Letters 59 (1982) 139–154.
[9] Rollinson H. R., “The geochemistry of mafic and ultramafic rocks from Archaean greenstone belts of Sierra Leone”, Mineralogical Magazine 47 (1983) 267-280.
[10] Nisbet E. G., Pearce J. A., “Clinopyroxene composition in mafic lavas from different tectonic settings”, Contributions to Mineralogy and Petrology 63 (1977) 149-160.
[11] Le Maitre R. W., “The chemical variability of some common igneous rocks” Journal of Petrology 17 (1976) 589-637.
[12] Whitney D. L., Evans B. W., “Abbreviations for names of rock-forming minerals”, American Mineralogist 95 (2010) 185-187.
[13] Stocklin J., “Mesosoic-Cenosoic orogenic belts data for orogenic studies”, Geological Society of London 4 (1974) 213-234.
[14] Takin M., “Iranian geology and continental drift in the Middle East”, Nature 235 (1972) 147-150.
[15] Arvin M., Robinson P. T., “The petrogenesis and tectonic setting of lavas from the Baft Ophiolitic Melange, southwest of Kerman, Iran”, Canadian Journal of Earth Sciences 31 (1994) 824-834.
[16] Ghazi A. M., Hassanipak A. A, “Paleo- and Neo-tethyan ophiolites of Iran: A progress report”, Geophysical Research Abstracts 5 (2003) 13476.
[17] Davoudzadeh M., “Geology and petrography of the area north of Naein, Central Iran”, Geological Survey of Iran, Tehran, Report No. 14 (1972) 89 p.
[18] Desmon J., Beccaluva L., “Mid-oceanic ridge and island arc affinities in ophiolites from Iran: Paleogeographic implication”, Chemical Geology 39 (1983) 39-63.
[19] McCall G. J. H., Kidd R. G. W., “The Makran, southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to present”, In: Legget J. (Eds.), Trench-forearc geology: Sedimentation and Tectonics of Modern and Ancient Plate Margins, Geological Society,
London, Special Publication 10 (1982) 387-397.
[20] Lippard S. J., Shelton A. W., Gass I. G., “The ophiolite of Northern Oman”, Geological Society of London 11 (1986) 178 p.
[21] Stocklin J., “Structural history and tectonics of Iran. A review”, Bulletin of American Association of Petroleum Geologists 52 (1968) 1229-1258.
[22] Davoudzadeh M., Soffel H., Schmidt K., “On the rotation of the Central-East Iran Microplate”, Neues Jahrbuch für Geologie und Paläontologie 3 (1981) 180-192.
[23]‌ شیردشت‌زاده ن.، "پترولوژی سنگهای دگرگونی افیولیت ملانژ نایین (استان اصفهان)"، پایان‌نامه کارشناسی ‌ارشد پترولوژی، دانشگاه اصفهان، (1386) 192 ص.
[24] Shirdashtzadeh N., Torabi G., Arai S., “Metamorphism and metasomatism in the Jurassic of Nain ophiolitic melange, Central Iran”, Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 255 (2010) 255–275.
[25] Shirdashtzadeh N., Torabi G., Meisel T., Arai S., Bokhari S.N.H., Samadi R., Gazel E., “Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): Implications for the Eastern Neo-Tethys evolution”, Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 273 (2014) 89–120.
[26] Torabi G., “Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central–East Iranian microcontinent confining oceanic crust subduction”, Island Arc 19 (2010) 277–291.
[27] Hassanipak A. A., Ghazi A. M., “Petrochemistry, 40Ar-39Ar ages and tectonics of the Naein ophiolite, Central Iran”, Proceeding of GSA Annual meeting, Reno, Nevada (2000) 237-238.
[28] Shafaii Moghadam H., Whitechurch H., Rahgoshay M., Monsef I., “Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone”, Comptes Rendus Geoscience 341 (2009) 1016–1028.
[29] Sharkovski M., Susov M., Krivyakin B., “Geology of the Anarak area (Central Iran), Explanatory text of the Anarak quadrangle map, 1:250,000”, Geological Survey of Iran, Tehran V/O Technoexport Report No. 19 (1984) 143p.
[30] Deer W.A., Howie R.A., Zussman J., “An Introduction to the Rock forming Minerals", Longmans (1992) 696 p.
[31] Morimoto N., “Nomenclature of pyroxenes”, Canadian Mineralogist 27 (1989) 143-156.
[32] Cox K. G., Bell J. D., Pankhurst R. J., “Interpretation of igneous rocks”, Allen and Unwin, London (1979) 450 p.
[33] Hughes C. J., “Spilites, keratophyres, and the igneous spectrum”, Geological Magazine 109 (1973) 513–527.
[34] McDonough W. F., Sun S. S., “The composition of the Earth”, Chemical Geology 120 (1995) 223-253.
[35] Niu F., Kawakatsu H., Fukao Y., “Seismic evidence for a chemical heterogeneity in the midmantle: A strong and slightly dipping seismic reflector beneath the Mariana subduction zone”, Journal of Geophysical Research B9, 2419 (2003) ESE 8-1 – ESE 8-12.
[36] Fretzdorff S., Livermore R. A., Devey C. W., Leat P. T., Stoffers P., “Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean”, Journal of Petrology 43 (2002) 1435–1467.
[37] Pearce J. A., Baker P. E., Harvey P. K., Luff I. A., “Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich Island Arc”, Journal of Petrology 36 (1995) 1073-1109.
[38] Valsami E., Cann J. R., “Evidence for the mobility of the rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece”, In; Parson L. M., Murton B. J., Browning P. (Eds.), “Ophiolites and Their Modern Oceanic Analogues”, Geological Society of London, Special Publication 60 (1992) 219-232.
[39] Teagle D. A. H., Alt J. C., “Hydrothermal alteration of basalts beneath the Bent Hill Massive Sulfide Deposit, Middle Valley, Juan de Fuca Ridge”, Economic Geology 99 (2004) 561–584.
[40] Rubin J. N., Henry C. D., Price J. G., “The mobility of zirconium and other “immobile” elements during hydrothermal alteration”, Chemical Geology 110 (1993) 29–47.
[41] Van Baalen M. R., “Titanium mobility in metamorphic systems: a review”, Chemical Geology 110 (1993) 233–249.
[42] Tilley D. B., Eggleton R. A., “Titanite low-temperature alteration and Ti mobility”, Clays and Clay Minerals 53 (2005) 102-109.
[43] Ordoñez-Calderon J. C., Polat A., Fryer B. J., Gagnon J. E., Raith J. G., Appel P. W. U., “Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southernWest Greenland”, Precambrian Research 161(3–4) (2008) 317–340.
[44] Shirdashtzadeh N., Torabi G., Samadi R., “Spinel composition in pillow lavas from Mesozoic ophiolites of Nain and Ashin (Central East Iranian microplate)”, The proceeding of 6th International Siberian Early Career GeoScientists Conference (2012) 43-44.
[45] Gorton M. P., Schanadel E. S., “From continetal to island arc: a geochemichal index of tectonic setting for arc related and within plate felsic to intermediate volcanic rocks”, The Canadian Mineralogist 38 (2000) 1065-1073.
[46] Shervais J. W., “Ti-V plots and the petrogenesis of modern and ophiolitic lava”, Earth and Planetary Science Letters 59 (1982) 101-118.
[47] Slovenec D., Lugović B., “Evidence of the spreading culmination in the Eastern Tethyan Repno oceanic domain, assessed by the petrology and geochemistry of N-MORB extrusive rocks from the Mt. Medvednica ophiolite melange (NW Croatia)”, Geologia Croatica 65 (2012) 435-446.
[48] Beccaluva L., Macciotta G., Piccardo G. B., Zeda O., “Clinopyroxene composition of ophiolite basalts as petrogenic indicator”, Chemical Geology 77 (1989) 165-182.
[49] ترابی ق.، "افیولیت‌های ایران مرکزی: نایین، عشین و سورک (مزوزوییک)، انارک، جندق، بیاضه و پشت بادام (پالئوزوییک)"، جهاد دانشگاهی اصفهان، (1391) 450 ص.
[50] Wood B. J., Blundy J. D., “A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt”, Contributions to Mineralogy and Petrology 129 (1997) 166-181.
[51] Nimis P., Taylor W. R. “Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in Cpx barometer and an enstatite-in-Cpx thermometer”, Contributions to Mineralogy and Petrology 139 (2000) 541-554.
CAPTCHA Image