Adelpour, M. and Rostamipaydar, G., 2018. The Study of alteration, mineralization, and fluid inclusion in the Howz-e-Sefid zinc-lead deposit (Central Iran). Iranian Journal of Geology, 47(12): 19–36. (in Persian with English abstract) Retrieved January 16, 2025 from
http://geology.saminatech.ir/en/Article/9609
Amiri, B. and Shahrokhi, S.V., 2017. Geochemistry and Mineralogy of Zn &Pb in Tang-e-Dozdan area (NE Feraydoonshahr-Isfahan Province). 29th Symposium of Minerallography and Mineralogy of Iran, Damghan University, Damghan, Iran.
Amiri, B. and Shahrokhi, S.V., 2023. Ore control factors of Zinc and Lead mineralization in the Tangedozdan area (NE Fereydounshahr-Isfahan Province). Journal of Economic Geology, 15(1): 27–31. (in Persian with English abstract)
https://doi.org/10.22067/econg.2023.79745.1058
Boveiri Konari, M. and Rastad E., 2017. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh Mining District, Iran. Geological Journal, 53(1): 1–23.
https://doi.org/10.1002/gj.2875
Boveiri Konari, M., Rastad E., Mohajjel M., Nakini A. and Haghdoost M., 2016. Structure, Texture, Mineralogy and Genesis of Sulphide Ore Facies in Tappeh Sorkh Detrital-Carbonate-Hosted Zn-Pb-(Ag) Deposit, South of Esfahan. Scientific Quarterly Journal of Geosciences, 25(97): 221–236. (in Persian with English abstract)
https://doi.org/10.22071/gsj.2015.41507
Choulet, F., Charles, N., Barbanson, L., Branquet, Y., Sizaret, S., Ennaciri, A., Badra, L. and Chen, Y., 2014. Non-sulfide zinc deposits of the Moroccan High Atlas: Multi-scale characterization and origin. Ore Geology Reviews, 56: 115–140.
http://dx.doi.org/10.1016/j.oregeorev.2013.08.015
Delavar, S.T., Rasa, I., Lotfi, M., Borg, G., Rashidnejad Omran, N. and Afzal., P., 2014. Geological evidence and ore body facies of Tangedezdan Zn-Pb (Ag) deposit in Jurassic-Cretaceous carbonate sequence, Booeen Miandasht (Isfahan-Iran). Scientific Quarterly Journal of Geosciences, 23(91): 77–88. (in Persian with English abstract)
https://doi.org/10.22071/gsj.2014.43777
Ehya, F., Lotfi, M. and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences, 37(2): 235–249.
https://doi.org/10.1016/j.jseaes.2009.08.007
Fazli, S., Taghipour, B. and Lentz, D., 2018. The Zn-Pb sulfide and Pb-Zn-Ag non-sulfide Kuh-e-Surmeh ore deposit, Zagros Belt, Iran: Geologic, mineralogical, geochemical, and S isotopic constraints. Journal of Geochemical Exploration, 194: 146–166.
http://dx.doi.org/10.1016/j.gexplo.2018.07.019
Gholizadeh, K., Rasa, I., Yazdi, M. and Boni, M., 2019. Mineralogy and geochemistry of Zincian-dolomite in Bahramtaj deposit, Yazd, Central Iran. Iranian Journal of Crystallography and Mineralogy, 27(4): 925–940. (in Persian with English abstract)
http://dx.doi.org/10.29252/ijcm.27.4.925
Gholizadeh, K., Rasa, I., Yazdi, M. and Boni, M., 2021. Geological structures and their role in control of mineralization in Bahramtaj Lead and Zinc deposit, Yazd province, Central Iran. Researches in Earth Sciences, 12(2): 206–225.
https://doi.org/10.52547/esrj.12.2.206
Goldsmith, R., Graf, D.L. and Northrup D.A., 1962. Studies in the system CaCO
3, -MgC0
3- FeCO
3: (1) phase relations; (2) a method for major element spectrochemical analyses; (3) compositions of some ferroan dolomites. The Journal of Geology, 70(6): 659–688.
https://doi.org/10.1086/626865
Goldsmith, R. and Northrup, D.A., 1965. Subsolidus Phase relations in the systems CaCO
3, -MgCO
3, -CoCO
3 and CaC0
3-M&O,-NiC0
3. Journal Geology, The Journal of Geology, 73(6): 817–829.
https://doi.org/10.1086/627122
Heyl, A.V. and Boizon, C.N., 1962. Oxidized zinc deposits of the United States, part 1. General geology, U.S. Geology Survey, 1135-A, 52 pp. Retrieved January 16, 2025 from
https://pubs.usgs.gov/bul/1135a/report.pdf
Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R. and Carman C.E., 2003. Classification, genesis, and exploration guides for Nonsulfide Zinc deposits. Economic Geology, 98(4): 685–714.
http://dx.doi.org/10.2113/98.4.685
Jazi, M.A., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2016. Crystallography, mineralogy and geochemistry of galena in Nakhlak lead mine (Esfahan). Iran Journal of Crystallography and Mineralogy, 24(1): 3–18. (in Persian with English abstract) Retrieved January 16, 2025 from
http://dorl.net/dor/20.1001.1.17263689.1395.24.1.1.3
Karimpour, M.H., MalekzadehShafaroudi, A., Alaminia, Z., EsmaeiliSevieri A. and Stern C.R., 2019. New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of Irankuh-Ahangaran belt. Journal of Economic Geology, 10(2): 677–706. (in Persian with English abstract)
https://doi.org/10.22067/econg.v10i2.76528
Karimpour, M.H., MalekzadehShafaroudi, A., EsmaeiliSevieri, A., Shabani, S., Allaz, J.M. and Stern, C.R., 2017. Geology, mineralization, mineral chemistry, and ore fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan. Journal of Economic Geology, 9(2): 267–294. (in Persian with English abstract)
https://doi.org/10.22067/econg.v9i2.64930
Luke, G., Nigel, J., Cook, C., Ciobanu, L. and Benjamin, P.W., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100(2–3): 548–569.
http://dx.doi.org/10.2138/am-2015-4862
Milliman, J.D., 1974. Marine Carbonates Part 1: Recent Sedimentary Carbonate. Springer-Verlag, Berlin, 375 pp.
Mondillo, N., Boni, M., Balassone, G. and Grist, B., 2011. In search of the lost zinc: a lesson from the Jabali (Yemen) nonsulfide zinc deposit. Journal of Geochemical Exploration, 108(3): 209-219.
https://doi.org/10.1016/j.gexplo.2011.02.010
Mondillo, N., Boni, M., Balassone, G. and Villa, I., 2014. The Yanque Prospect (Peru): From Polymetallic Zn-Pb Mineralization to a Nonsulfide Deposit. Economic Geology, 109(6): 17351763.
https://doi.org/10.2113/econgeo.109.6.1735
Mondillo, N., Wilkinson, J., Boni, M., Weiss, D. and Mathur, M., 2018. A global assessment of Zn isotope fractionation in secondary Zn minerals from sulfide and non-sulfide ore deposits and model for fractionation control. Chemical Geology, 500: 182–193.
https://doi.org/10.1016/j.chemgeo.2018.09.033
Monecke, T., Kohler, S., Kleeberg, R., Herzing, P.K. and Gemmell, J.B., 2001. Quantitative phase-analysis by the Rietveld method using X-ray powder-diffraction data: Application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits. The Canadian Mineralogist, 39(6): 1617–1633.
http://dx.doi.org/10.2113/gscanmin.39.6.1617
Motavali, K., Behzadi, M. and Yazdi, M., 2019. Geochemical evolution in Nodusahn Zn-Pb hydrothermal deposit with an emphasis on ore mineralography and sulfide analysis. Iranian Journal of Crystallography and Mineralogy, 27(1): 95–108. (in Persian with English abstract)
http://dx.doi.org/10.29252/ijcm.27.1.95
Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County. VA. Ph.D. thesis, University of Maryland, Maryland, USA, 137 pp.
Paradis, S., Keevil, H., Simandl, G. and Raudsepp, M., 2015. Carbonate-hosted non sulphide Zn-Pb Mineralization of southern British Columbia, Canada. Mineralium Deposita, 50(8): 923–951.
http://dx.doi.org/10.1007/s00126-014-0565-9
Peernajmodin, H., Rastad, E. and Rajabi, A., 2018. Ore structural, textural, mineralogical and fluid inclusions studies of the Kouh-Kolangeh Zn-Pb-Ba deposit, Malayer- Isfahan metallogenic belt, South Arak, Iran. Scientific Quarterly Journal of Geosciences, 27(107): 287–303. (in Persian with English abstract)
https://doi.org/10.22071/gsj.2018.63856
Rao, C.P. and Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103(1–3): 249–272.
https://doi.org/10.1016/0025-3227(92)90019-E
Rao, C.P. and Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonate, Western Tasmania, Australia. Carbonates and Evaporites, 10: 114–123.
https://doi.org/10.1007/BF03175247
Slezak, P.R., Olivo, G.R., Oliveira, G.D. and Dardenne, M.A., 2014. Geology, mineralogy, and geochemistry of the Vazante Northern Extension zinc silicate deposit, Minas Gerais, Brazil. Ore Geology Reviews, 56: 234–257.
http://dx.doi.org/10.1016/j.oregeorev.2013.06.014
Soheili, M., Jafarian, M.B. and Abdollahi, M.R., 1992. Geological map of Aligudarz Scale 1:100000. Geological Society of Iran.
Thiele, O., Alavi, M. and Assefi, R., 1967. Geological map of Golpaygan Scale 1:250000. Geological Society of Iran.
Vandeginste, V., John, C.M. and Manning, Ch., 2013. Interplay between depositional facies, diagenesis and early fracture in the Early Cretaceous Habshan Formation, Jebel Madar, Oman. Marine and Petroleum Geology, 43: 489–503.
https://doi.org/10.1016/j.marpetgeo.2012.11.006
Yang, Q., Liu, W., Zhang, J., Wang, J. and Zhang, X., 2019. Formation of Pb Zn deposits in the SichuanYunnan Guizhou triangle linked to the Youjiang foreland basin: Evidence from Rb Sr age and in situsulfur isotope analysis of the Mapping Pb Zn deposit in northeastern Yunnan Province, Southeast China. Ore Geology Reviews, 107: 780–800.
https://doi.org/10.1016/j.oregeorev.2019.03.022
Send comment about this article