The Study of Major and Trace Elements Geochemistry of Gezeldash Daghi Mn Deposit, NW of Marand (Eastern Azerbaijan)

Document Type : Research Article

Authors

1 University of Tabriz

2 Payame Noor University

Abstract

Introduction
It is generally understood that manganese deposits have a diverse origin, based on their mineralogy, chemical composition and tectonic setting. Marine Mn-bearing deposits are classified as hydrogenous, hydrothermal and also biogenetic-bacterial deposits (Bonatti et al., 1972; Hein et al., 1997; Bau et al., 2014; Polgári et al., 2012; Schmidt et al., 2014). Hydrogenous processes can form ferromanganese crusts, which result from slow precipitation of seawater at the seafloor often via microbial mediation (Toth, 1980; Dymond et al., 1984; Bau and Dulski, 1999; Usui and Someya, 1997; Hein et al., 2000; Jach and Dudek, 2005). Diagenetic manganese deposits occur as nodules and precipitate from hydrothermal solutions or pore water (Polgári et al., 1991; Oksuz, 2011; Polgári et al., 2012), whereas hydrothermal ore deposits are stratabound or occur as irregular bodies and epithermal veins, where they are formed in a marine environment near spreading centers, intraplate seamounts or in subduction-related island arc setting (Roy, 1992; Roy, 1997; Hein et al., 2008; Edwards et al., 2011).
 
Materials and Method
Eighteen Ore samples (~ 500 g each) were collected systematically from the Gezeldash Daghi manganese deposit. All these ore samples were taken representatively from the surface outcrops ore beds in different places for geochemical analyses. Ore samples were powdered under 200 meshes and analyzed at Iran mineral processing research center laboratories, Tehran. After being prepared by the Lithium Borate Fusion method, their major oxide and trace element contents were determined with ICP-OES.  The results of the analyses are given in Tables 1 and 2.
 
Results and Discussion
The deposit is hosted in various lithology and horizons consisting of: 1) tuffite interlayered with limestone, 2) conglomerate and sandstone lithology into volcano-sedimentary basin located at 25 km northwest of Marand city (N38°35ʹ40ʺ, E45°42ʹ40ʺ). Major and trace element assessments show that hydrothermal solutions were effective in the formation of the Gezeldash Daghi manganese deposit. Also, field observations reveal that manganese mineralization occurred as laminated-layered and fracture-filling form in limestone and tuffite at horizon I and the space-filling form between conglomerate clasts and veinlet form in sandstone at horizon II with quaternary age. Therefore, it can be concluded that hydrothermal solutions were caused in the formation of the manganese deposit which may be described as related to volcano-hydrothermal occurrence.
 
Acknowledgements
The authors are grateful to the Tabriz University Grant Committee for research funding.
References
Bau, M. and Dulski, P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1–2): 77–90.
Bau, M., Schmidt, K., Koschinsky, A., Hein, J.R. and Usui, A., 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geolgy, 381: 1–9.
Bonatti, E., Kraemer, T. and Rydell, H., 1972. Classification and genesis of submarine iron-manganese deposits. In: D. Horn (Editor), Ferromanganese Deposits on the Ocean Floor. National Science Foundation, Washington, pp. 149–166.
Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N., 1984. Ferromanganese nodules from MANOP sites H, S and R–control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48(5): 931–949.
Edwards, K.J., Glazer, B.T., Rouxel, O.J., Bach, W., Emerson, D., Davis, R.E., Toner, B.M., Chan, C.S., Tebo, B.M., Staudigel, H. and Moyer, C.L., 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. The ISME Journal, 5(11): 1748–1758.
Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J. K. and Roberts, L., 2000. Cobalt-rich ferromanganese crusts in the Pacific. In: D.S. Cronan, (Editor), Handbook of Marine Minerals Deposit. CRC Press, Boca Raton, Florida, pp. 239–279.
Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J. K. and Lubick, N., 1997. Iron and manganese oxide mineralization in the Pacific. In: K. Nicholson, J.R. Hein, B. Buhn, S. Desgupta, (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society Special Publication, London, pp. 123–138.
Hein, J.R., Schulz, M.S., Dunham, R.E., Stern, R.J. and Bloomer, S.H., 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and Southern Izu-Bonin arc system, western Pacific. Journal of Geophysical Research, 113(8): 1–29.
Jach, R. and Dudek, T., 2005. Origin of a Toarcian manganese carbonate/silicate deposit from the Krížna unit, Tatra Mountains, Poland. Chemical Geology, 224(1–3): 136–152.
Oksuz, N., 2011. Geochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit, Turkey. Journal of Rare Earths, 29(3): 287–296.
Polgári, M., Hein, J.R., Vigh, T., Szabó-Drubina, M., Fórizs, I., Bíró, L., Müller, A. and Tóth, A.L., 2012. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geology Reviews, 47: 87–109.
Polgári, M., Okita, P.M. and Hein, J.R., 1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. Journal of Sedimentary Research, 61(3): 384–393.
Roy, S., 1992. Environment and processes of manganese deposition. Economic Geology, 87(5): 1218–1236.
Roy, S., 1997. Genetic diversity of manganese deposition in the terrestrial geological record. In: K. Nicholson, J.R. Hein, B. Buhn and S. Dasgupta (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, special publication, London, pp. 5–27.
Schmidt, K., Bau, M., Hein, J. and Koschinsky, A., 2014. Fractionation of the geochemical twins Zr-Hf and Nb-Ta during scavenging from seawater by hydrogenetic ferromanganese crusts. Geochimica et Cosmochimica Acta, 140: 468–487.
Toth, J.R., 1980. Deposition of submarine crusts rich in manganese and iron. GSA Bulletin, 9(1): 44–54.
Usui, A. and Someya, M., 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: K. Nicholson, J.R.  Hein, B.  Buhn and S.  Dasgupta (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, Special Publications, London, pp. 177–198.

Keywords


Abdolahi, M.R. and Hosseini, H., 1996. Geological map of Julfa, scale 1:100.000. Geological Survey of Iran.
Acharya, B.C., Rao, D.S. and Sahoo, R.K., 1997. Mineralogy, chemistry and genesis of Nishikhal manganese ores of south Orissa, India. Mineralium Deposita, 32(1): 79–93.
Aghanabati, S.A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 586 pp. (in Persian with English abstract)
Ahmadzadeh, G., Jahangiri, A., Lentz, D. and Mojtahedi, M., 2010. Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. Journal of Asian Earth Sciences, 39(1–2): 37–50.
Allen, M., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long term deformation rates. Tectonics, 23(2): 1–16.
Amini, S., Moayyed, M. and Khezerlo, A., 2005. Petrology and Geochemistry of potassic and ultrapotassic rocks of NW Iran. 9th symposium of Iranian Geological Society, Tarbiat Moalem University of Tehran, Tehran, Iran.
Aplin, A.C. and Cronan, D.S., 1985. Ferromanganese oxide deposits from the central Pacific Ocean, II. Nodules and associated sediments. Geochimica et Cosmochimica Acta, 49(2): 437–451.
Axen, G.J., Lam, P.S., Grove, M., Stockli, D.F. and Hassanzadeh, J., 2001. Exhumation of the west central Alborz Mountains, Iran, Caspian Subsidence, and collision-related tectonics. Geology, 29(6): 559–562.
Bau, M. and Dulski, P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1–2): 77–90.
Bau, M., Schmidt, K., Koschinsky, A., Hein, J.R. and Usui, A., 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geolgy, 381: 1–9.
Bonatti, E., Kraemer, T. and Rydell, H., 1972. Classification and genesis of submarine iron-manganese deposits. In: D. Horn (Editor), Ferromanganese Deposits on the Ocean Floor. National Science Foundation, Washington, pp. 149–166.
Burgath, K.P. and Von Stackelberg, U., 1995. Sulfide-impregnated volcanics and ferromanganese incrustations from the southern Lau basin (southwest Pacific). Marine Georesources and Geotechnology, 13(3): 263–308.
Cann, J.R., Winter, C.K. and Pritchard R.G., 1977. A hydrothermal deposit from the floor of the Gulf of Aden. Mineralogical Magazine, 41(318): 193–199.
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–163: 70–87.
Choi, J.H. and Hariya, Y., 1992. Geochemistry and depositional environment of Mn oxide deposits in Tokoro Belt, Northeastern Hokkaido, Japan. Economic Geology, 87(5): 1265–1274.
Crerar, D.A., Namson J., Chyi, M.S., Williams, L. and Feigenson, M.D., 1982. Manganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for the hydrothermal convection at oceanic spreading centers. Economic Geology, 77(3): 519–40.
Davoudzadeh, M.B. and Weber-Diefenbach, K., 1997. Paleogeograpghy, Stratigraphy and tectonics of the tertiary of Iran. Neues Jahrbuch für Geologie und Palaontologie - Abhandlungen. 205(1): 33–67.
Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N., 1984. Ferromanganese nodules from MANOP sites H, S and R–control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48(5): 931–949.
Edwards, K.J., Glazer, B.T., Rouxel, O.J., Bach, W., Emerson, D., Davis, R.E., Toner, B.M., Chan, C.S., Tebo, B.M., Staudigel, H. and Moyer, C.L., 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. The ISME Journal, 5(11): 1748–1758.
Gelati, R., 1975. Miocene marine sequence from Lake Van area, eastern Turkey. Rivista Italiana di Paleontologia e Stratigrafia, 8(4): 477–490.
Ghorbani, M., 2013. The economic geology of Iran. Springer, London, 581 pp.
Glasby, G.P., 2000. Manganese: predominant role of nodules and crust. In: H.D. Schulz and M.Ž. Zabel (Editors), Marine Geochemistry. Springer-Verlag, Berlin, pp. 335–372.
Halbach, P. and Puteanus, D., 1988. Geochemical trends of different genetic types of nodules and crusts. In: P. Halbach, G. Friedrich, and U. Von stackelberg, (Editors), The manganese nodule belt of the pacific. Ferdinand Enke, Stuttgart, pp. 61–69.
Halbach, P., Scherhag, C., Hebish, U. and Marchig, V., 1981. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Mineralium Deposita, 16(1): 59–84.
Hein, J.R. and Koschinsky, A., 2013. Deep-ocean ferromanganese crusts and nodules. In: H.D. Holland, and K.K. Turekian (Editors), Treatise on Geochemistry. Elsevier, Amsterdam, pp. 273–291.
Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J. K. and Roberts, L., 2000. Cobalt-rich ferromanganese crusts in the Pacific. In: D.S. Cronan, (Editor), Handbook of Marine Minerals Deposit. CRC Press, Boca Raton, Florida, pp. 239–279.
Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J. K. and Lubick, N., 1997. Iron and manganese oxide mineralization in the Pacific. In: K. Nicholson, J.R. Hein, B. Buhn, S. Desgupta, (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society Special Publication, London, pp. 123–138.
Hein, J.R., Schulz, M.S., Dunham, R.E., Stern, R.J. and Bloomer, S.H., 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and Southern Izu-Bonin arc system, western Pacific. Journal of Geophysical Research, 113(8): 1–29.
Jach, R. and Dudek, T., 2005. Origin of a Toarcian manganese carbonate/silicate deposit from the Križna unit, Tatra Mountains, Poland. Chemical Geology, 224(1–3): 136–152.
Karakuş A, Yavuz B. and Koç S., 2010. Mineralogy and major-trace element geochemistry of the Haymana manganese mineral‌izations, Ankara, Turkey. Geochemistry International, 48(10):1014–27.
Keskin, M., Pearce, J.A., Kempton, P.D. and Greenwood, P., 2006. Magma–crust interactions and magma plumbing in a postcollisional setting: Geochemical evidence from the Erzurum–Kars volcanic plateau, eastern Turkey. In: Y. Dilek and S. Pavlides (Editors), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, Special Papers 409, pp. 475–505.
Kuleshow, V.N., 2011. Manganese deposits: communication 1. Genetic models of manganese ore formation. Lithology and Mineral Resources, 46(5): 473–493.
Maanijou, M., Nasiri, A., Aliani, F., Mostaghimi, M., Gholipoor, M. and Maghsoodi, A., 2015. The study of major, trace and rare earth elements geochemistry in Shahrestanak Mn deposit, south of Qom: implications for genesis. Journal of Economic Geology, 7(1): 1–2. (in Persian with English abstract)
Mckenzi, D.P., 1972. Active tectonics of the Mediterranean region, Geophysical Journal International, 30(2): 109–185.
Moayyed, M., 2001. Petrological investigations on volcano-plotonic Tertiary of Azerbijan- westeren Alborz with specific view on Hashtjin area. Ph.D. Thesis, Shahid Beheshti University, Tehran, Iran, 328 pp.
Moghadam, H.S., Ghorbani, G., Khedr, M.Z., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Francisco, C.G., Martinez, M.L., Gourgaud, A. and Arai, S., 2014. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau. Gondwana Research, 26(3–4) 1028–1050.
Nicholson, K., 1992a. Genetic types of manganese oxide deposits in Scotland: Indicators of paleo-Ocean-spreading rate and a Devonian geochemical mobility boundary. Economic Geology, 87(5): 1301–1309.
Nicholson, K., 1992b. Contrasting mineralogical–geochemical signatures of manganese oxides. Guides to metallogenesis. Economic Geology, 87(5): 1253–1264.
Nicholson, K., Nayak, VK. and Nanda, JK., 1997. Manganese ores of the Ghoriajhor Monmunda area, Sundergarh District, Orissa, India: geochemical evidence for a mixed Mn source. In: K. Nicholson, J.R. Hein, B. Buhn and S. Dasgupta, (editors), Manganese mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, Special Publication, London, pp. 117–121.
Oksuz, N., 2011. Geochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit, Turkey. Journal of Rare Earths, 29(3): 287–296.
Peters, T., 1988. Geochemistry of manganese-bearing cherts associated with Alpine-ophiolites and the Hawasina formations in Oman. Marine Geology, 84(3–4): 229–238.
Polgari, M., Hein, J.R., Vigh, T., Szabo-Drubina, M., Forizs, I., Biro, L., Müller, A. and Toth, A.L., 2012. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geology Reviews, 47: 87–109.
Polgari, M., Okita, P.M. and Hein, J.R., 1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. Journal of Sedimentary Research, 61(3): 384–393.
Ramzi, H. and Mostafaie, K., 2013. Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arabian Journal of Geosciences, 6(8): 2961–2970.
Rona, P.A., 1987. Criteria for recognition of hydrothermal mineral deposits in oceanic crust. Economic Geology, 73(2): 135–160.
Roy, S., 1992. Environment and processes of manganese deposition. Economic Geology, 87(5): 1218–1236.
Roy, S., 1997. Genetic diversity of manganese deposition in the terrestrial geological record. In: K. Nicholson, J.R. Hein, B. Buhn and S. Dasgupta (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, special publication, London, pp. 5–27.
Şaşmaz, A., Türkyilmaz, B., Öztürk, N., Yzvuz, F. and Kurmal, M., 2013. Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazig-Malatya region, eastern Turkey. Ore Geology Reviews, 56: 352–372.
Schmidt, K., Bau, M., Hein, J. and Koschinsky, A., 2014. Fractionation of the geochemical twins Zr-Hf and Nb-Ta during scavenging from seawater by hydrogenetic ferromanganese crusts. Geochimica et Cosmochimica Acta, 140: 468–487.
Schultz, H.D., 2006. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: H.D. Schultz and M. Zabel (Editors), Marine Geochemistry. Springer, Berlin, pp. 73–124.
Shah, M.T. and Khan, A., 1999. Geochemistry and origin of Mn-deposits in the Waziristan ophiolite complex, north Waziristan, Pakistan. Mineralium Deposita, 34(7): 697–704.
Shah, M.T. and Moon, C.J., 2004. Mineralogy, geochemistry and genesis of the ferromanganese ores from the Hazara area, NW Himalayas, northern Pakistan. Journal of Asian Earth Sciences, 23(1): 1–15.
Shah, M.T. and Moon C J., 2007. Manganese and ferromanganese ores from different tectonic
settings in the NW Himalayas, Pakistan. Journal of Asian Earth Sciences, 29(2–3): 455–465.
Sugisaki, R., 1984. Relation between chemical composition and sedimentation rate of Pacific ocean floor sediments deposited since the middle Cretaceous: basic evidence for chemical constraints on depositional environments of ancient sediments. The Journal of Geology, 92(3): 235–259.
Stöcklin, J., 1977. Structural correlation of the Alpine ranges between Iran and Central Asia. Memoires hors Serie de la Societe Geologique de France, 8: 333–353.
Stöcklin, J., Setudehnia, A., 1991. Stratigraphic Lexicon of Iran. Geological Survey of Iran, Tehran, report 18, 376 pp.
Toth, J.R., 1980. Deposition of submarine crusts rich in manganese and iron. GSA Bulletin, 9(1): 44–54.
Usui, A. and Someya, M., 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: K. Nicholson, J.R. Hein, B. Buhn and S. Dasgupta (Editors), Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, Special Publications, London, pp. 177–198.
Xie, J.C., Yang, X.Y., Du, J.G. and Xu, W., 2006. Geochemical characteristics of sedimentary manganese deposit of Guichi, Anhui Province, China. Journal of Rare Earths, 24(3): 374–380.
Zantop, H., 1981. Trace elements in volcanogenic manganese oxides and iron oxides: the San Francisco deposit, Jalisco, Mexico. Economic Geology, 76(3): 545–555.
Zarasvandi, A., Rezaee, M., Poorkaseb, H. and Saki, A., 2013. Investigation on secondary and primary processes in Nasir Abad Mn deposit, East of Neyriz using mineralogy and geochemistry of Pb isotopes. Journal of Economic Geology, 5(1): 37–47. (in Persian with English abstract)
CAPTCHA Image