Mineralogy and economic geology of Cheshmeh Hafez polymetal deposit, Semnan Province, Iran

Document Type : Research Article

Authors

Kharazmi

Abstract

The Cheshmeh Hafez polymetal deposit is located in Troud – Chahshirin mountain range in Southeastern Damghan. In this province, the volcanism and associated mineralization are closely related to major faults Anjilo and Troud with NW-SE trend. The exposed rocks in the study area consist of volcano clastic sequence of sandstone, tuff, volcano breccias and mostly andesitic and andesitic- basalt flows at Cheshmeh Hafez district. Alteration in Cheshmeh Hafez area is consisting of Proplilitization, Sericitization, Argillic alteration and Silicification. Mineralization occurred in three district stages; 1) quartz, carbonate with early pyrite and chalcopyrite assemblages; 2) the main stage of sulfide deposition, comprises early euhedral galena followed by galena and sphalerite, then galena, chalcopyrite, tetrahedrite, pyrite, bornite and digenite, and 3) quartz and calcite barren veins with minor pyrite and chalcopyrite. The average assays from 12 samples of Cheshmeh Hafez veins are; 0.15 g/t Au, 3.23 g/t Ag, 4.47 wt % Pb, 2.64 wt % Cu, and 1.73 wt % Zn. Fluid- inclusion homogenization temperatures (Th) in quartz fall within range of 140º-300º with salinities ranging from 4.7 to 18 wt. % NaCl equivalent. Comparison of Th versus final ice melting (Tmice) values indicates the occurrence of fluid mixing process. In order to evaluate extent of mineralization in depth, IP and RS techniques were used, which indicate the presence of mineralization in depth.

Keywords


[1] Aghanabati, A., ˝Geology of Iran˝, Geol, Surv, Iran, (2003) 123-147.
[2] Alavi, M., ˝Tectonic map of the Middle East˝, Geol, Surv, Iran, (1991).
[3] برنا، ب.، و عشق آبادی، م.، "گزارش ارزیابی و اکتشافی کانسارها و اندیس های سرب وروی استان سمنان"، اداره کل معادن و فلزات استان سمنان، (1376) 226 صفحه.
[4] Azizi, H., Jahangiri, A., "Cretaceous subduction- related volcanism in the Northern Sanandaj Sirjan zone, Iran", J.Geodyn 45, (2008) 178-190.
[5] هوشمندزاده، ع.، و همکاران, ˝تحول پدیده های زمین شناسی ترود (پرکامبرین تا عهد حاضر) ˝، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور (1357).
[6] Le Maiter, R.W., ˝A classifications of igneous rocks and glossary of terms˝, Black well scientific publications, (1986) 191 p.
[7] Cox, K.G., Bell, J. D., Pankhust, R.J., ˝The interpretation of igneous rocks˝, George Allen and Unwin, London, (1979).
[8] pearce, J.A., ˝Trace element characteristics of lavas from destructive plate boundaries˝, In, Thorpe, R.S. Andesites, Wiley, New York, (1982) 525-548.
[9] Muller, D., Rock, N.M.S. Groves, D.I., ˝Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings˝, A pilot study, Mineral, (1992) Petrol., 46, 259–289.
[10] Kennedy, A.K., Grove, T.L. Johnson, R.W., ˝Experimental and major element constraints on the evolution of lavas from Lihir Island˝, New Guinea, Contrib. Mineral. Petrol., (1990) 104, 722–734.
[11] Schmidt, G., Palme, H. Kratz, K.L. Kurat, G., ˝Are highly siderophile elements ZPGE, Re and Au˝, fractionated in the upper mantle of the earth, new results on peridotites from Zabargad, Chemical Geology, 163 (2000) 167–188.
[12] Pearce, J.A. and Can, J.R., ˝Tectonic setting of basic volcanic rocks determined using trace elements analysis˝, Earth planet. (1973) 290-30.
[13] Muller, D., Leander, F., Peter, M., and Stev, H., ˝Potassic igneous rocks from the vicinity of epithermal gold mineralization˝, Lihir Island, Papua New Guinea, Lithos, 57 (2001) 163-185.
[14] McDonough, W.F., and Sun, S.-S., ˝The composition of the earth˝, Chemical Geology, 120 (1995) 223–253.
[15] Pearse, J.A., Peate, D.W., ˝Tectonic implications og the composition of the volcanic arc magmas˝, Annual Review of Earth and Planetary Science, (1995) v. 23, 251-285.
[16] Wood, D.A., Joron, J. L., and Treuil, M., ˝A re-appraisal of the use of trace elements to classify and discriminate between magma series in different tectonic setting˝, Earth Planet. Sci. letter, 45 (1980) 326-336.
[17] Hassanzadeh, J., Ghazi, A.V. Axen, G. and Guest, B., ˝Oligomiocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc˝, Geological Society of America Abstracts with Program, 34 (2002) no. 6, 331p.
[18] Downes, P.M., ˝Yerranderie a Late Devonian Silver–Gold–Lead intermediate sulfidation epithermal district˝, Eastern Lachlan Orogen, New South Wales, Australia, Resource Geology, 57 (2006) 1-23.
[19] شرکت تحقیقات و کاربرد مواد معدنی ایران، "اکتشافات ژئوفیزیکی در منطقه گردنه توتو"،(1385) 300 صفحه.
[20] Shepherd, T.J., Rankin, A.H., Alderton, D.H.M., ˝A practical guides to fluid inclusion studies˝, Blackie press, (1985) 239 p.
[21] Roedder, E., ˝Fluid inclusions: Reviews in Mineralogy˝, 12 (1984) 644 p.
[22] Bodnar, R.J., ˝Revised equation and table for determining the freezing point depression of H2O-NaCl solutions˝, Geochimica et Cosmochimica Acta, 57 (1993) 683–684.
[23] Hall, D.l. and Bodnar, R.J., ˝Freezing point depression of NaCl ـ KCl ـ H2O˝, Econ, Geol., 65 (1988) p123.
[24] Camprubi, A., Chomiak, B.A., Canals, A., Norman, D.I., ˝Fluid sources for the La Guitarra epithermal deposit (Temascaltepec district, Mexico): Volatile and helium isotope analyses in fluid inclusions˝, Chemical Geology, 231 (2006) 252-284.
[25] Wilkinson, J.J. ˝Fluid Inclusion in hydrothermal ore deposit˝, Lithos, 55 (2001) 229-272.
[26] Brathwaite, R.L., Faure, K., ˝The Waihi epithermal gold-silver-basemetal sulfide-quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition˝, Econ. Geol, 97 (2002) 269-290.
[27] Simmons, S.F., Gemmell, B. Sawkins, F.J., ˝The Santo Nino silver-lead-zinc vein, Fresnillo district, Zacatecas˝, Mexico: Part II. Physical and chemical nature of ore-forming solutions: Economic Geology, 83 (1988) 1619-1641.
[28] Simmons, S.F. ˝Hydrothermal implications of alteration and fluid inclusion studies in the Fresnillo district˝, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore bodies: Economic Geology, 86 (1991) 1579-1601.
[29] Albinson, T., Norman, D.I. Cole, D. and Chomiak, B., ˝Controls on formation of low-sulfidation epithermal deposits in Mexico˝: Constrains from fluid inclusion and stable isotope data: Society of Economic Geologists, Sp. Publ. 8 (2001) 1-32.
[30] Henley, R. W., ˝The geological framework of epithermal deposits, In Berger. P.M (Ede), Geology and geochemistry of epithermal system˝, Soc Econ. Geol, (1986) p 1-24.
[31] White, D. E., ˝Diverse origins of hydrothermal ore fluids˝, Econ. Geol. 69 (1974) 954-973.
[32] White, N. C., Hedenquist, J. W., ˝Epithermal gold deposits: Styles, Characteristic and exploration˝, Society of Economic Geology Newsletter, 23 (1995) 9-13.
[33] Hedenquist, J.W., Arribas R., A. Gonzalez-Urien, E., ˝Exploration for epithermal gold deposits: Reviews in Economic Geology˝, 13 (2000) 245-277.
[34] Hass, j. l., ˝The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure˝, Econ Geol, 66 (1971) 940-946.
[35] Einaudi, M.T., Hedenquist, J.W. Inan, E.E., ˝Sulfidation state of fluids in active and extinct hydrothermal systems˝:Transitions from porphyry to epithermal environments. Soc. Economic Geology Spec. Pub., 10 (2003) 285– 313.
[36] Sillitoe, R.H., Hedenquist, J.W., ˝Linkages between volcano-tectonic settings, Ore-fluid compositions and epithermal precious metal deposits˝, Society of Economic Geologists Spec. No., 10 (2003) 315 – 343.
[37] Gemmell, J.B., ˝Low, and intermediate-sulfidation epithermal deposits˝, ARC- AMIRAP, Australia, (2004) 57– 63.
[38] Seward, T.M., Barnes, H.L. ˝Metal transport by hydrothermal ore fluids˝, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, New York, John Wiley and Sons, (1997) 435–486.
[39] Palyanaova, G., ˝Physicochemistry modeling of the coupled behavior of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implications˝, Chemical Geology, 255 (2008) 399-413.
[40] Benning, L.G., Seward, T.M. ˝Hydrosulfide complexing of Au in hydrothermal solutions from 150 to 400 ºC and 500 to 1500 bars˝, Geochimica, et. Cosmochimica Acta, 60 (1996) 1849–1871.
[41] Giggenbach, W.F., ˝Theorigin and evolution of fluids in magmatic-hydrothermal systems˝, in Barnes,H.L., Geochemistry of hydrothermal ore deposits, 3rd ed.; New York, Wiley Interscience, (1997) 737-796.
[42] Corbett, g., ˝Controls to low sulphidation epithermal Au/Ag mineralization˝, NSW Australia (2002). [43] Hedenquist, J. W., Lowenstern, J. B., ˝The role of magmas in the formation of hydrothermal ore deposits˝, Nature, 370 (1994) 519-527
CAPTCHA Image