بررسی‌ های دگرسانی، کانه نگاری، زمین‌ شیمی و سیالات درگیر در محدوده اکتشافی جفت رود، جنوب‌ غرب بیرجند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه زمین شناسی و گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 دکتری، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

محدوده اکتشافی جفت‌رود در مرکز بلوک لوت و 60 کیلومتری جنوب­ غرب بیرجند واقع‌شده است. این محدوده دارای برون‌زدهایی از واحدهای آذرآواری (توف آندزیتی)، آتشفشانی (هورنبلند آندزیت، پیروکسن آندزیت، آندزیت بازالتی) و توده ­های نفوذی (دیوریت پورفیری، مونزودیوریت، گابرو) است. کانی‌سازی به شکل رگه ­ای با امتداد اغلب شمال ­شرق‌– جنوب‌غرب در واحدهای آندزیتی تشکیل‌شده است. دگرسانی ­های عمده شامل سیلیسی، آرژیلیک، کربناته و پروپلیتیک است. کانی ­های اولیه شامل پیریت، کالکوپیریت و کانی­ های ثانویه شامل مالاکیت، آزوریت، کریزوکلا، کالکوسیت، کوولیت، گوتیت و هماتیت هستند. بیشترین بی­ هنجاری­های زمین‌شیمی در رگه­ ها برای مس 6000 گرم در تن، سرب 2934 گرم در تن، روی 6904 گرم در تن و طلا 144 میلی ­گرم در تن است. رگه ­های کوارتز-سولفید از سیالاتی با دمای 265 تا 408 درجه سانتی­ گراد و شوری­ های 1/11 تا 19 درصد وزنی NaCl تشکیل شده ­اند. کاهش دما و همچنین اختلاط با سیالی با شوری بیشتر می­ تواند باعث ته ­نشینی فلزها شده باشد. محدوده اکتشافی بر اساس شواهدی مانند کنترل ساختاری کانی­ سازی، نوع دگرسانی ­ها و گسترش خطی آنها، کانی ­شناسی، بافت، داده ­های سیالات درگیر و عمق تشکیل مشابه کانسارهای سولفید متوسط است.

کلیدواژه‌ها


Beane, R.E., 1983. The Magmatic–Meteoric Transition. Geothermal Resources Council (Special Report 13), 245–253. Retrieved September 29, 2024 from https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1005457
Eftekhar-Nezhad, J., Vahdati Daneshmand, F. and Kholghi, M.H., 1975. Geological map of Khusf, scale 1:100,000. Geological Survey of Iran, Tehran.
Einaudi, M.T., Hedenquist, J.W. and Inan, E.E., 2005. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: S.F. Simmons and I. Graham (Editors), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Society of Economic Geologists, Littleton, pp. 285–313. https://doi.org/10.5382/SP.10.15
Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94(8): 1193–1212. https://doi.org/10.2113/gsecongeo.94.8.1193
Gemmell, J.‌B., 2004. Low- and intermediate sulfidation epithermal deposits. In: D.R. Cooke, C.L. Deyel and J. Pongratz (Editors), 24 Ct Gold Workshop. University of Tasmania. Hobart, Australia, pp. 57–63. Retrieved July 20, 2022 from http://catalogobiblioteca.ingemmet.gob.pe/cgibin/koha/opac-detail.pl?biblionumber=40195
Hedenquist, J.W., Arribas, A. and Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Littleton, pp. 245–277. https://doi.org/10.5382/Rev.13.07
Hedenquist, J.W. and Henley, R.W., 1985. Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to precious metal mineralization. Economic geology, 80(6): 1640−1668. https://doi.org/10.2113/gsecongeo.80.6.1640
Javidi Moghaddam, M., Karimpour, M.H., Ebrahimi Nasrabadi, K., Haidarian Shahri, M.R. and Malekzadeh Shafaroudi, A., 2018. Mineralogy, geochemistry, fluid inclusion and oxygen isotope investigations of epithermal Cu ± Ag veins of the Khur Area, Lut Block, Eastern Iran. Acta Geologica Sinica, 92‌(‌3): 1139–1156. https://doi.org/10.1111/1755-6724.13596
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M.R., 2013. Satellite data processing, alteration, mineralization and geochemistry of Mehrkhash area prospect, North West of Birjand. Researches in Earth Sciences 4(4): 56–69. (in Persian with English abstract) Retrieved September 29, 2024 from https://esrj.sbu.ac.ir/article_95473.html
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Heidariane Shahri, M.R., 2014. Geology, alteration, mineralization and geochemistry of Shekaste Sabz area prospect, North West of Birjand. Iranian Journal of Crystallography and Mineralogy, 22(3): 507–520. (in Persian with English abstract) Retrieved September 29, 2024 from https://ijcm.ir/browse.php?a_id=231&sid=1&slc_lang=en
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A., Santos, J.F. and Corfu, F., 2021. Middle Eocene magmatism in the Khur region (Lut Block, Eastern Iran): implications for petrogenesis and tectonic setting. International Geology Review, 63 (9): 1051–1066. https://doi.org/10.1080/00206814.2019.1708815
Javidi Moghaddam, M., Karimpour, M.H., Malekzadeh Shafaroudi, A., Santos, J.F. and Mendes, M.H., 2019. Geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of intrusive rocks: Constraint on the genesis of the Cheshmeh Khuri Cu mineralization and its link with granitoids in the Lut Block, Eastern Iran. Journal of Geochemical Exploration, 202: 59–76. https://doi.org/10.1016/j.gexplo.2019.04.001
Karimpour, M.H., Malekzadeh Shafaroudi, A., Stern, C.R. and Farmer, L., 2012. Petrogenesis of Granitoids, U–Pb zircon geochronology, Sr–Nd isotopic characteristic and important occurrence of Tertiary mineralization within the Lut Block, Eastern Iran. Journal of Economic Geology, 4(1): 1–27. (in Persian with English abstract) https://doi.org/10.22067/econg.v4i1.13391
Karjo, M., 2021. Report on the progress of the exploration operation of the Joftrud poly-metal area. Geological Survey of Iran, Birjand, 47 pp.
Lecumberri-Sanchez, P., Steel-MacInnis, M. and Bodnar, R.J., 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92: 14–22. https://doi.org/10.1016/j.gca.2012.05.044
Lotfi, M., 1982. Geological and geochemical investigations on the volcanogenic Cu, Pb, Zn, Sb ore-mineralization in the Shurab-Gale Chah and northwest of Khur (Lut, east of Iran). Ph.D. thesis, University of Hamburg, Hamburg, Germany, 150 pp.
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2013. Geology, Mineralization and fluid inclusion studies in Howz-e-Raise lead–zinc-copper deposite, Eastern Iran. Journal of Advanced Applied Geology, 2(4): 63–73. (in Persian with English abstract) Retrieved September 29, 2024 from https://aag.scu.ac.ir/article_11587.html?lang=fa
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2015. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead–zinc (–copper) deposit, Eastern Iran. Journal of African Earth Sciences, 107: 1–14. https://doi.org/10.1016/j.jafrearsci.2015.03.015
Mehrabi, B., Tale Fazel, E. and Yardley, B., 2019. Ore geology, fluid inclusions and O-S stable isotope characteristics of Shurab Sb-polymetallic vein deposit, eastern Iran. Geochemistry, 79(2): 307–322. https://doi.org/10.1016/j.geoch.2018.12.004
Roedder, E., 1984. Fluid inclusions. In: P.E. Ribbe (Editor), Reviews in Mineralogy 12. Mineralogy Society of America, 644 pp. Retrieved June 3, 2023 http://www.minsocam.org/msa/rim/rim12.html
Salim, L., 2012. Geology, petrology and geochemistry of volcanic and sub volcanic rocks in Cheshme Khuri area (North West of Birjand). M.Sc. thesis, Birjand University, Birjand, Iran, 117 pp.
Scott, A.M. and Watanabe, Y., 1998. Extreme boiling model for variable salinity of the Hokko low-sulfiation epithermal Au prospect, southwestern Hokkaido Japan. Mineralium Deposita, 33: 563–578. https://doi.org/10.1007/s001260050173
Seward, T.M. and Barnes, H.L., 1997. Metal transport by hydrothermal ore fluids. In: H. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 435–486. Retrieved June 29, 2024 from https://books.google.com/books/about/Geochemistry_of_Hydrothermal_Ore_Deposit.html?id=vy2_QnyojPYC
Seward, T.M., 1973. Thio complexes of gold and the transport of gold in hydrothermal solutions. Geochimica et cosmochimica Acta, 37(3): 379–399. https://doi.org/10.1016/0016-7037(73)90207-X
  Seward, T.M., 1991. The hydrothermal geochemistry of gold. In: R.P. Foster, (Editor), gold metallogeny and exploration. Blakie and Sons, Littleton, pp. 37-62. Retrieved June 29, 2024 from https://link.springer.com/chapter/10.1007/978-1-4613-0497-5_2
Shepherd. T, Rankin. A.H. and Alderton. D.H.M., 1985. A prac- tical guide to fluid inclusion studies. Blackie, Glasgow, 239 pp. Retrieved November 2, 2024 from
Sillitoe, R.H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the Circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373–388. https://doi.org/10.1080/08120099708728318
Sillitoe, R.H. and Hedenquist, J.W., 2003. Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious-metal deposits. In: S.F. Simmons and I. Graham (Editors), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth. Society of Economic Geologists Special Publication 10, Littleton, pp. 315–343. https://doi.org/10.5382/SP.10.16
Simmons, S.F. and Browne, P.R.I., 1997. Saline fluid inclusions in sphalerite from the Broadlands-Ohaaki geothermal system: A coincidental trapping of fluid boiled toward dryness. Economic Geology, 92(4): 485–489. https://doi.org/10.2113/gsecongeo.92.4.485
Steele-MacInnis, M., Lecumberri-Sanchez, P. and Bodnar, R.J., 2012. HOKIEFLINCS-H2O-NACL: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers & Geosciences, 49: 334–337. http://dx.doi.org/10.1016/j.cageo.2012.01.022
Wang, L., Qin, K.Z., Song, G.Y. and Li, G.M., 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434–456. https://doi.org/10.1016/j.oregeorev.2019.02.023
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals: American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Yang, E., Mao, J., Bierlein, F., Pirajno, F., Zhao, C., Ye, H. and Liu, F., 2009. A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China. Ore Geology Reviews, 35(2): 217–234. https://doi.org/10.1016/j.oregeorev.2008.09.003
     
CAPTCHA Image