منطقه بندی کانسنگ، زمین‌ شیمی و الگوی رخداد کانه‌ زایی آهن در توالی آتشفشانی- رسوبی هرمز، جزیره لارک، جنوب بندرعباس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

کانه­ زایی آهن در جزیره لارک در 30 کیلومتری جنوب بندرعباس، در خلیج فارس و در پهنه ساختاری زاگرس چین‌خورده رخ‌داده است. از لحاظ توالی سنگ چینه ­ای، این جزیره به طور عمده متشکل از سری آتشفشانی- رسوبی هرمز به سن نئوپروتروزوئیک پسین بوده که شامل گدازه ­ها و توف ریولیتی، شیل، توف و رسوبات تبخیری است. کانه ­زایی آهن در افق چینه ­شناسی خاص در داخل توالی آتشفشانی- رسوبی رخ‌داده است. پیکره ­های معدنی از پایین به بالا، دارای چهار نوع کانسنگ رگه- رگچه ­ای، برشی، توده ­ای و نواری هستند. کانسنگ آهن به طور عمده حاوی کانی ­های اولیه اولیژیست و مگنتیت، و کانی‌های ثانویه هماتیت و گوتیت بوده و کانی­ های کوارتز، انیدریت، آپاتیت و کلسیت کانی­ های اصلی باطله را تشکیل می ­دهند. مهم ­ترین دگرسانی­ های سنگ دیواره در این منطقه شامل دگرسانی سیلیسی-­ سریسیتی، کربناتی، کلریتی و آرژیلیک هستند. بر اساس بررسی‌های زمین ­شیمیایی، نمونه ­های به دست آمده از کانسنگ آهن در نمودار Fe/Ti در مقابل Al/ (Al+Fe+Mn+Na+K+Ca) و نمودار Mg در مقابل V/Ti در محدوده سازند آهن نواری (BIF) قرار می‌گیرند. با توجه به ماهیت آتشفشانی- رسوبی توالی سنگ میزبان، رخساره ­های کانسنگی، بافت و ساخت و کانی­ شناسی، دگرسانی و ویژگی­ های زمین‌شیمیایی، کانه ­زایی آهن در جزیره لارک بیشترین شباهت را با کانسارهای BIF نوع آلگوما نشان می ­دهد.

کلیدواژه‌ها


Aghanabati, S.A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 400 pp. (in Persian)
Ahmadzadeh Heravi, M., Houshmandzadeh, A. and Nabavi, M.H., 2008. New concepts of Hormuz Formations, stratigraphy and the problem of salt diapirism in south Iran. Symposium on diapirism with special reference to Iran. Geological Survey of Iran, Tehran, Iran.
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103(8): 983–992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2
Allen, P.A., 2007. The Huqf supergroup of Oman: basin development and context for Neoproterozoic glaciation. Earth-Science Reviews, 84(3–4): 139–185. https://doi.org/10.1016/j.earscirev.2007.06.005
Atapour, H. and Aftabi, A., 2017. The possible synglaciogenic Ediacaran hematitic banded iron salt formation (BISF) at Hormuz Island, southern Iran: Implications for a new style of exhalative hydrothermal iron-salt system. Ore Geology Reviews, 89: 70–95. https://doi.org/10.1016/j.oregeorev.2017.05.033
Barrett, T.J. and Jarvis, I., 1988. Rare-earth element geochemistry of metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Chemical Geology, 67(3–4): 243–259. https://doi.org/10.1016/0009-2541(88)90131-3
Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O. and Rouxel, O.J., 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3): 467–508. https://doi.org/10.2113/gsecongeo.105.3.467
Biabangard, B., Alian, F. and Bazamad, M., 2018. Petrography, mineralization and mineral explorations in the Zendan salt dome (Hara), Bandar Lengeh. Journal of Economic Geology, 10(1): 195–216.  (in Persian with English abstract) https://doi.org/10.22067/ECONG.V10I1.45224    
Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M. and Whitehouse, M.J., 2004. Characterization of early Archaean chemical sediments by trace element signatures. Earth Planetary Science Letters, 222(1): 43–60. https://doi.org/10.1016/j.epsl.2004.02.016
Boström, K., 1975. Origin and Fate of Ferromanganoan Active Ridge Sediments. In: J.H. Kenneth and H.C. Jenkyns (Editors), Pelagic Sediments: On Land and under the Sea. The International Association of Sedimentologists, pp. 401–403. https://doi.org/10.1002/9781444304855.ch18   
Cannon, W.F., Hadley, D.G. and Horton, R.J., 1995. Algoma Fe deposits: In: E.A. du Bray (Editor), Preliminary compilation of descriptive geoenvironmental mineral deposit models. U.S. Geological Survey Open-File Report 95–831, pp. 209–213. Retrieved June 15, 2023 from https://pubs.usgs.gov/of/1995/0831/report.pdf
Darvishzadeh, A., 2009. Geology of Iran: stratigraphy, tectonic, metamorphism, and magmatism. Amir Kabir Publication Institute, Tehran, 436 pp.
Dill, H.G., 2010. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100(1–4): 1–420. https://doi.org/10.1016/j.earscirev.2009.10.011  
Evans, A.‌M., 1993. Ore geology and industrial minerals: an introduction. John Wiley & Sons, London, 400 pp.
Fakhri Dodoei, A., 2018. Economic geology and geochemistry of H4 part of Hormuz series, Hormuz Island. M.Sc. thesis, Shahrood University of Technology, Shahrood, Iran, 179 pp. (in Persian with English abstract)  
Fakhri Dodoei, A. and Alipour Asl, M., 2020. Mineralogy, geochemistry, fluid inclusions and genesis of magnetite-apatite mineralization at southwest of Hormuz Island, Iran. Iranian Journal of Geology, 14‌(56): 1–19. (in Persian with English abstract)  Retrieved June 11, 2023 from http://geology.saminatech.ir/en/Article/15742
Faramarzi, N.‌S., Rezay, S.M.H., Amini, S., Schmitt, A.K., Hassanzadeh, J., Borg, G., McKeegan, K. and Mortazavi, S.M., 2015. Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation. Lithos, 236–237: 203–211. https://doi.org/10.1016/j.lithos.2015.08.017
Franklin, J.M., Gibson, H.L., Galley, A.G. and Jonasson, I.R., 2005. Volcanogenic massive sulfide deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, pp. 523–560.  https://doi.org/10.5382/AV100.17   
‏Goodfellow, W.D., 2005. Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn basin, Canada. In: M. Deb and W.D. Goodfellow (Editors), Sediment-hosted lead-zinc sulfide deposits: Attributes and models of some major deposits of India, Australia and Canada. Economic Geology, 100 (3): 597–598. Retrieved June 16, 2023 from https://catalogobiblioteca.ingemmet.gob.pe/cgi-bin/koha/opac-detail.pl?biblionumber=15561
Gourcerol, B., Thurston, P.C., Kontak, D.J., Côté-Mantha, O. and Biczok, J., 2016. Depositional setting of Algoma-type banded iron formation. Precambrian Research, 281: 47–79.‏ https://doi.org/10.1016/j.precamres.2016.04.019
Gross, G.A., 1996. Algoma-type previous termiron-formation. next term. In: D. Lefebure and T. Hoy (Editors), Selected British Columbia mineral deposits Profiles. British Columbia Ministry of Employment and Investment Open File, Ottawa, pp. 25–28.
Haynes, D.W., Cross, K.C., Bills, R.T. and Reed, M.H., 1995. Olympic Dam ore genesis; a fluid-mixing model. Economic Geology, 90(2): 281–307. https://doi.org/10.2113/gsecongeo.90.2.281
Hou, K., Ma, X., Li, Y., Liu, F. and Han, D., 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60–69. https://doi.org/10.1016/j.gexplo.2018.11.005 
Lasemi, Y., 2000. Y. Facies analysis, depositional environments and sequence stratigraphy of Precambrian and Late Paleozoic rock units in Iran. Geological Survey of Iran, Tehran, 180 pp.
Moon, I., Lee, I. and Yang, X., 2017. Geochemical constraints on the genesis of the Algoma-type banded iron formation (BIF) in Yishui County, western Shandong Province, North China Craton. Ore Geology Reviews, 89: 931–945. https://doi.org/10.1016/j.oregeorev.2017.08.005
Mortazavi, S.M., 1991, Magmatism of Hormuz complex and its relationship with diapirism in the Larak Island. M.Sc .thesis, University of Tehran, Tehran, Iran, 200 pp.
Nyström, J.O. and Henríquez, F., 1994. Magmatic features of iron ores of the Kiruna-type in Chile and Sweden; ore textures and magnetite geochemistry. Economic Geology, 89(4): 820–839. https://doi.org/10.2113/gsecongeo.89.4.820
Ohmoto, H., Watanabe, Y., Yamaguchi, K.‌E., Naraoka, H., Haruna, M., Kakegawa, T., Hayashi, K.‌I. and Kato, Y., 2006. Chemical and biological evolution of early Earth: Constraints from banded iron formations. In: S.E. Kesler and H. Ohmoto (Editors), Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits. The Geological Society of America, USA, 198, pp. 291–333. https://doi.org/10.1130/2006.1198(17) 
Pakizeh Sanajerdi, A., Mousivand, F., Rajabi, A., Maghfouri, S., 2020. Nohkuhi volcanogenic massive sulfide (VMS) deposit: Bathurst- type mineralization in northwest of Kerman. Scientific Quarterly Journal of Geosciences, 29(115): 111–122.  (in Persian with English abstract) http://doi.org/10.22071/GSJ.2019.117154.1397
Peter, J.M., 2004. Ancient iron-rich metalliferous sediments (iron formations): their genesis and use in the exploration for stratiform base metal sulphide deposits, with examples from the Bathurst Mining Camp. In: D.R., Lentz (Editor), Geochemistry of Sediments and Sedimentary Rocks: Secular Evolutionary Considerations to Mineral Deposit-Forming Environments. Geological Association of Canada, pp. 145–176.‏ Retrieved June 16, 2023 from https://www.academia.edu/48242394/Ancient_iron_rich_metalliferous_sediments_iron_formations_their_genesis_and_use_in_the_exploration_for_stratiform_base_metal_sulphide_deposits_with_examples_from_the_Bathurst_Mining_Camp
Pilgrim, G.E., 1925. The geology of parts of the Persian provinces of Fars, Kirman, and Laristan. Government of India, central publication branch, 48‌(2): 116 pp. Retrieved 11 June 2023 from https://www.amazon.com/-/es/Guy-Ellcock-Pilgrim/dp/B00089MOJI
Pirajno, F., 2009. Hydrothermal Mineral Deposits, Principles and Fundamental Concepts for the Exploration Geologist. 1992 Edition, Springer, Berlin, 709 pp. https://doi.org/10.1007/978-3-642-75671-9
Pirajno, F. and Yu, H.C., 2021. Cycles of hydrothermal activity, precipitation of chemical sediments, with special reference to Algoma-type BIF. Gondwana 100: 251–260. https://doi.org/10.1016/j.gr.2021.02.012
Posth, N.R., Konhauser, K.O. and Kappler, A., 2013. Microbiological processes in banded iron formation deposition. Sedimentology, 60‌(7): 1733–1754. https://doi.org/10.1111/sed.12051  
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology, petro genesis and implications for Gondwana tectonics. American journal of science, 303(7): 622–665. https://doi.org/10.2475/ajs.303.7.622
‏Robb, L., 2005. Introduction to ore-forming processes. Black Well Publishing Company, UK, London, 373 pp.‏
Rostami, A., Alipour, S., Abedini, A., 2020. Petrology, geochemistry, and tectonomagmatic setting of volcanic rocks of the Hormuz and the Gachin salt domes (Hormozgan Province, Iran). Petrological journal university of Isfahan press, 11(2): 81–104. https://doi.org/10.22108/ijp.2020.121790.1162 
Shanks, W.C.P., III, and Thurston, R., 2012. Volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, Virginia, 345 pp. Retrieved June 16, 2023 from https://pubs.usgs.gov/sir/2010/5070/c/SIR10-5070-C.pdf
Spry, P.G., Peter, J.M. and Slack, J.F., 2000. Meta-exhalites as exploration guides to ore. In: P.G. Spry, B. Marshall and F.M. Vokes (Editors), Metamorphosed and metamorphogenic ore deposits. Society of Economic Geologists, Reviews in Economic Geology, 11: 163–201. https://doi.org/10.5382/Rev.11.08
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7): 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D‏‏
Talaei Hassanlouei, B. and Rajabzadeh, M.A., 2018. Iron ore deposits associated with Hormuz evaporitic series in Hormuz and Pohl salt diapirs, Hormuzgan province, southern Iran, Journal of Asian Earth Sciences. 172: 30–55. https://doi.org/10.1016/j.jseaes.2018.08.024
Taner, M.F. and Chemam, M., 2015. Algoma-type banded iron formation (BIF), Abitibi Greenstone belt, Quebec, Canada. Ore Geology Reviews, 70: 31–46. https://doi.org/10.1016/j.oregeorev.2015.03.016
Tavakoli, P., Moaafpurian, G. and Moghtaderi, A., 2014. Investigation of genesis of Iron ore from Tange Zagh deposit, Bandar Abbas.  6th Conference of Society of Economic Geology of Iran, Zahedan, Iran. (in Persian) Retrieved September 26, 2018 from https://civilica.com/doc/746717/
Waltham, T., 2008. Salt terrains of Iran. Geology Today, 24‌(5): 188–194. https://doi.org/10.1111/j.1365-2451.2008.00686.x  
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 
Yin, J., Li, H. and Xiao, K. 2023. Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes. Minerals, 13(4): 547. https://doi.org/10.3390/min13040547
Young, G.M., 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Research, 3‌(2): 137–158.  https://doi.org/10.1016/0301-9268(76)90030-9
Yu, P., Zheng, Y., Qian, J. and Lin, Z., 2018. Geological, geochronological and geochemical constraints on the Tianhu iron deposit, Chinese Tianshan Orogen, NW China: A modified Algoma-type BIF deposit. Ore Geology Reviews, 100: 317–333. https://doi.org/10.1016/j.oregeorev.2017.06.004
     
CAPTCHA Image