کاربرد شیمی پیروکسن در ارزیابی دما– فشار و جایگاه تکتونوماگمایی سنگ های نفوذی اردویسین زیارت، جنوب گرگان (استان گلستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم زمین، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

منطقه مورد بررسی، بخشی از زون ساختاری البرز است که در منطقه زیارت واقع‌شده است. این منطقه از سنگ­ های گابرو، الیوین گابرو، گابرو تا مونزوگابرو دگرسان‌شده، متاگابرو، مونزونیت، دیوریت پورفیری به سن اردویسین  تشکیل‌شده است. کانی ­های تشکیل‌دهنده سنگ‌های منطقه شامل بلورهای پلاژیوکلاز با ترکیب لابرادوریت، کلینوپیروکسن و الیوین همراه با کانی­ های فرعی آپاتیت، اسفن، بیوتیت، و کانی­ های ثانویه از نوع کلریت، سریسیت، کانی­ های رسی و اپیدوت است. بافت بیشتر این سنگ­ ها گرانولار و افیتیک است. نتایج به ‌دست آمده از تجزیه نقطه ­ای کلینوپیروکسن­ های گابروها توسط الکترون مایکروپروپ ترکیب اوژیت را برای پیروکسن ­ها نشان می ­دهد. بررسی شیمی کلینوپیروکسن نشان‌دهنده میزان درصد آب ماگمای کمتر از 5 درصد است. بر اساس ترکیب شیمیایی کلینوپیروکسن، ماگمای والد دارای ماهیت آلکالن است و جایگاه زمین­ ساختی تشکیل آنها در ارتباط با کمان آتشفشانی است. ژئوترموبارومتری کلینوپیروکسن ­ها دمای تشکیل 7/1277 تا 1/1353 درجه سانتی گراد و فشار بیشتر از 10 کیلوبار را برای تبلور پیروکسن نشان می ­دهد.

کلیدواژه‌ها


Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo–Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103(8): 983–992.  https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2
Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, 21(1): 1–33. https://doi.org/10.1016/0264-3707(95)00009-7
Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25(5): 659–672. https://doi.org/10.1016/S0191-8141(02)00064-0
Azizzadeh, Q., Raghimi, M., Sheikhzakariaee, S. and Rahimi Chakdel, A., 2018. Geochemical characteristics of Gabbroic rocks in Zyarat in North East of Iran. Bulletin of the Mineral Research and Exploration, 157‌‌(157): 153–164. https://doi.org/10.19111/bulletinofmre.413716
Beccaluva, L., Macciotta, G., Piccardo, GB. and Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77‌(3–4): 165–182. https://doi.org/10.1016/0009-2541(89)90073-9
Berberian, M. and King, G.C.P., 1981. Toward apaleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
Berger, J., Femenias, O., Mercier, J.C.C. and Demaiffe, D., 2005. Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker. Journal of Metamorphic Geology, 23(9): 795–812. https://doi.org/10.1111/j.1525-1314.2005.00610.x
Brunet, M.F., Ershov, A.V., Korotaev, M.V. and Nikishin, A.M., 2003. The South Caspian basin: a review of its evolution from subsidence modelling. Sedimentary Geology, 156(1–4): 119–148. https://doi.org/10.1016/S0037-0738(02)00285-3
Darvishzadeh, A., 1991. Geology of Iran. Neda Publication, Tehran, 901 pp.
Dioh, E., Béziat, D., Grégoire, M. and Debat, P., 2009. Origin of rare earth element variations in clinopyroxene from plutonic and associated volcanic rocks from the Foulde basin, Northern Kedougou inlier, Senegal, West Africa. European Journal of Mineralogy, 21(5): 1029–1043. https://doi.org/10.1127/0935-1221/2009/0021-1963
Downes, H. and Leyreloup, A., 1986. Granulitic Xenoliths from the french massif central, Petrology, Sr and Nd isotope systematics and model age estimatics. Geological Society London, 24(1): 319–330. https://doi.org/10.1093/petroj/40.10.1465
Droop, G.‌T.‌R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361): 431–435. https://doi.org/10.1180/minmag.1987.051.361.10
Eickmann, B., Bach, W., Rosner, M. and Peckmann, J., 2009. Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge. Chemical Geology, 268(1–2): 97–106. https://doi.org/10.1016/j.chemgeo.2009.08.002
Foley, S.‌F. and Venturelli, G., 1989. Boninites and Related Rocks. Springer, New York, 496 pp.
Fotovat Roudsari, H., 2006. Structural analysis of shear zones in Gorgan Transformation Collection, M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 77 pp.
Gansser, A., 1951. Geological reconnaissance in the Gorgan and surrounding areas. Geological Survey of Iran, Tehran, report 18, 37 pp.
Ghasemi, H., Kazemi, Z. and Salehian, Sh., 2015. Comparision of the Mafic Igneous Rocks from the Ghelli Formation (Upper Ordovician) and the Gorgan Schists in the Eastern Alborz Zone. Geosciences, 24(96): 263–301.  https://doi.org/10.22071/GSJ.2015.41771
Ghavidel-Syooki, M., 2009. Palynostratigraphy and paleogeography of Ordovician strata (Abastu and Abarsaj formations) from the southeastern Caspian Sea, northeastern Iran. Joint meeting of spores-pollen and acritarch subcommissions, University of the Algarve, Faro, Portugal.
Ghorbani, H., Moazen, M. and Saki, A., 2019. Comparison of the Thermometery-Barometery methods by using Thermocalc and Theriak-domino to study Calc- silicate Hornfelses in Cheshin, Hamedan. Journal of Economic Geology, 11(2): 195–209. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V11I2.66002
Green, D.H. and Ringwood, A.E., 1967. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology, 15(2): 103–109. https://doi.org/10.1007/BF00372052
Helz, R.T., 1976. Phase relations of basalts in their melting range at PH2O = 5 kb. Part Π Melt compositions, Journal of Petrology, 17(2): 139–193.  https://doi.org/10.1093/petrology/14.2.249
Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A.H., Fakhari, M., Zamanzadeh, S.M. and Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451(1–4): 97–122. https://doi.org/10.1016/j.tecto.2007.11.063
Hubber, H., 1957. Geological reporte on south Gorgan mountain front between Nika and Shah-Pasand. National Iran Oil Company, Tehran, report 164, 39 pp.
Jamshidi, Kh., Afsharian, A., Sahbaie, M., and Dehhaghi, F., 1991. 1:250000 geological map of Gorgan. Geological Survey and Mineral Exploration of Iran Press.
Jenny, J.G., 1977. Precambrien et Paleozoique inferieur de l’Elbourz oriental entre Aliabad et Shahrud, Iran du nord–est. Eclogae Geologicae Helvetiae 70(1): 761–770. https://doi.org/10.19111/bulletinofmre.413716
Kretz, R., 1983. Symbols of rock-forming minerals. American Mineralogist, 68(2): 277–279. https://doi.org/10.1130/B26587
Le Bas, M.‌J., 1962. The role of aluminum in igneous. Clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267–288. https://doi.org/10.2475/ajs.260.4.267
Leterrier, J., Maury, R.‌C., Thonon, P., Girard, D. and Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo - volcanic series. Earth and Planetary Science Letters, 59(1): 139–154. https://doi.org/10.1016/0012-821X(82)90122-4
Lindsley, D.H., 1983. Pyroxene thermometry. American Mineralogist, 68(5–6): 477–493. https://doi.org/10.29252/ijcm.27.3.707
Liu, T.‌C., Chen, B.‌R. and Chen, C.‌H., 2000. Melting experiment of a Wannienta Basalt in the Kuanyinshan area, northern Taiwan. Journal of Asian Earth Sciences, 18(5): 519–531. https://doi.org/10.1016/S1367-9120(00)00002-X
Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.‌V., Ross, M., Seifert, F.‌A., Zussman, J., Aoki, K. and Gottardi, G., 1988- Nomenclature of pyroxene, Mineralogical Magazine, 52(367): 535–‌55. https://doi.org/10.22067/econg.v8i2.46817
Nakamura, D., 2009. A new formulation of garnet- clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. Journal of Metamorphic Geology, 27(7): 495–508. https://doi.org/10.1111/j.1525-1314.2009.00828.x
Nimis, P.A., 1995. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology, 121(2): 115–125. https://doi.org/10.1007/s004100050093
Nimis, P. and Taylor, W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotite. Part 1. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139(5): 541–554. https://doi.org/10.1007/s004100000156
Nimis, P. and Ulmer, P., 1998. Clinopyroxene geobarometry of magmatic rocks. 1. An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contributions to Minerology and Petrology, 133(1–2): 122–135. https://doi.org/10.1007/s004100050442
Nisbet, E.‌G. and Pearce, J.‌A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings, Contributions to Mineralogy and Petrology, 63: 149‌–‌160. https://doi.org/10.1007/BF00398776
Nosova, A.‌A., Sazonova, L.‌V., Narkisova, V.‌V. and Simakin, S.‌G., 2002. Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals. Geochemistry International, 40(3): 219–232. https://doi.org/10.1134/S0016702910030043
Ottonello, G., 1997. Principles of geochemistry. Columbia University Press, Nw York, USA, 894 pp.
Pearce, J.‌A., 2008. Geochemical. fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100 (1–4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
Putirka, K., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61–120. https://doi.org/10.2138/rmg.2008.69.3
Putirka, K., Johnson, M., Kinzler, R. and Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123(1): 92–108. https://doi.org/10.1007/s004100050145
Putirka, K., Mikaelian, H., Ryerson, F. and Shaw, H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542–1554. https://doi.org/10.2138/am-2003-1017
Ross, P. and White, J.D.L., 2006‌. Debris jets in continental phreatomagmatic volcanoes: a field study on their subterranean deposits in the Coombs Hill ventcomplex, Antarctica. Journal of Volcanology and Geothermal Research. 149‌(1–2): 62–84. https://doi.org/10.1016/j.jvolgeores.2005.06.007
Salavati, M. and Fahim Guilany, R., 2014. Petrology and geochemistry of Imam-Zadeh Hashem mafic and ultramafic bodies, southern Guilan province. Journal of Economic Geology, 6‌(1): 87–105. (in Persian with English abstract) http://dx.doi.org/10.22067/ECONG.V6I1.38362
Salehian, Sh., 2011. Study of Petrology and Geochemistry of Mafic Igneous Rocks in Gorgan Shistes. M.Sc. Thesis, Shahroud University of Technology, Shahroud, Iran, 175 pp.
Salehi Rad, M.R., 1979. Etude géologique de la region de Gorgan (Alborz oriental, Iran). Ph.D. Thesis, University of Paris, Paris, France, 162 pp.
Sayari, M., 2012. APG: An efficient software program for Amp-Pl thermobarometry based on graphical method. Journal of Sciences, Islamic Republic of Iran, 22‌(4): 345–349. http://dx.doi.org/10.22059/JSCIENCES.2011.23869
Şengor, A.M.C., 1990. A new model for the late Palaeozoic–Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society of London, 49‌(1): 797–831. http://dx.doi.org/10.1144/gsl.sp.1992.049.01.49
Shahpasand Zadeh, M., 1992. Structural Analysis and Interpretation of Sedimentary Environment of Gorgan. 10th Symposium of Geological Society of Iran, Tarbiat Modarres University, Tehran, Iran.
 Shahpasand Zadeh, M. and Keshavarz, S., 2019. Structural evolution and sedimentary-tectonic analysis of Gorgan schists: remnants of a pre-arc zone or intercontinental palate remnants of Paleo Tethys. 1st National Conference on Geology of Alborz Orogene and Caspian Sea, Golestan University, Gorgan, Iran.
Sinha A.K., 2012. Petrological characterization of Proterozoic mafic dykes from the Singhbhum craton, eastern India, 34th International Geological Congress, University of Queensland, Brisbane, Australia.
Sinha, A.K., 2013. Geochemistry of distinct mafic dykes from the Damodar valley Gondwana basins and Chhotanagpur gneissic terrain, eastern India: implications for their petrogenesis and tectonic setting. 125th anniversary of The Geological Society of America, Cornell University, New York, USA.
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization PT- estimation. Journal of the Geological Society of Sweden, 119‌(1): 55–60. https://doi.org/10.1080/11035899709546454
Soto, J.‌I., 1993. Software for thermobarometry and activity calculations with mafic and ultramafic assemblages. American Mineralogists, 78‌(7–8): 840‌–‌844. https://doi.org/10.1016/0098-3004(94)00101-Y
Spear, F. S., 1995. Metamorphic phase equilibria and pressure - temperature- time paths. Mineralogical Society of American, Washington D.C., USA, 799 pp.
Stampfli, G.M. and Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary science letters 196 (1–2): 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X
Stöcklin, J., 1968. Structural history and tectonics of Iran: A review. The American Association of Petroleum Geologists Bulletin, 52‌(7): 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D
Stöcklin, J., 1974. Possible ancient continental margins in Iran. In: C.A. Burk and C.L. Drake (Editors), The geology of continental margins. Springer, New York, pp. 873–887. https://doi.org/10.1007/978-3-662-01141-6_64
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20‌(1): 325–343. https://doi.org/10.1016/0009-2541(77)90057-2