کانی‌ شناسی، زمین‌ شیمی و ریزدماسنجی میان‌ بارهای سیال کانی آپاتیت و کانی‌ های عناصر کمیاب خاکی در کانسار اسفوردی، شمال شرق بافق، استان یزد

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش علوم زمین، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

چکیده

کانسار آهن-‌آپاتیت اسفوردی در شمال‌شرق شهر بافق قرار دارد. آپاتیت دارای الگوی ناهمگن رنگ با فاز‌های تاریک و روشن است که با غلظت‌های متفاوت REE و عناصر Si، Cl وF  مشخص می‌شود. دو نسل کانی مونازیت به صورت گسترده و زنوتیم به صورت معدود در بلورهای آپاتیت تشکیل شده‌اند. نسل دوم مونازیت دارای نسبت بالاتر La/Ce و غنی‌شدگی عناصر La، Pr و Nd در مقایسه با مونازیت نسل اول است. توزیع عناصر کمیاب خاکی در آپاتیت و مونازیت نشان‌دهنده غنی‌شدگی از LREE بوده که ویژگی کانسار‌های آهن-‌آپاتیت نوع کایروناست. دو محدوده مشخص از چگالی در میان‌بار‌های سیال نشان‌دهنده حضور دو نوع سیال ماگمایی با دما و شوری بالا و گرمابی با دما و شوری کم تا متوسط است. اختلاط سیال و کاهش دما عوامل مهم در ته‌نشست کانسار هستند. بخش عمده و اصلی کانسار اسفوردی در دمایی بین 146 تا 486 درجه سانتی‌گراد تشکیل‌شده است.

کلیدواژه‌ها


Andreoli, M.A.G., Smith, C.B., Watkeys, M., Moore, J.M., Ashwal, L.D. and Hart, R.J., 1994. The geology of the Steenkampskraal monazite deposit, South Africa, Implications for REE-Th-Cu mineralization in charnockite-granulite terranes. Economic Geology, 89(5): 994–1016. https://doi.org/10.2113/gsecongeo.89.5.994
Belousova, E.A., Griffin, W.L., O’Reilly, S.Y. and Fisher, N.I., 2002. Apatites as indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45–69. https://doi.org/10.1016/S0375-6742(02)00204-2
Boomeri, M., 2012. Rare earth minerals in Esfordi magnetite-apatite ore deposit, Bafq district. Journal of Geosciences, 22(85):71–82. http://dx.doi.org/10.22071/gsj.2012.54023
Borumandi, H., 1973. Petrographische und lagerstattenkundliche untersuchungen der Esfordi–formation zwischen Mishdovan and Kushk bie Bafq, Zentral Iran. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 174 pp.
Boynton, W.V., 1985. Cosmo chemistry of the rare earth elements: Meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry, (Developments in Geochemistry2). Elsevier, Amsterdam, pp. 115–1522. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Edfelt, A., 2007. The Tjarrojakka Apatite-Iron and Cu (-Au) deposits, Northern Sweden, Division of Ore Geology and Applied Geophysics. Ph.D. Thesis, Lulea University of Technology, Lulea, Sweden, 230 pp.
Fan, H.R., Groves, D.I., Mikucki, E.J. and Mc Naughton, N.J., 2000. Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia: Implications of auriferous fluids depositing ores within and Archean banded iron- formation. Economic Geology, 95(7): 1527–1536. https://doi.org/10.2113/gsecongeo.95.7.1527
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in kiruna– type iron ores and some other iron ore types. Ore Geology Reviews, 9(6): 489–510. https://doi.org/10.1016/0169-1368(94)00015-G
Harlov, D.E., 2015. Apatite: A fingerprint for metasomatic processes. Elements, 11(3): 171–176. https://doi.org/10.2113/gselements.11.3.171
Harlov, D.E., Anderson, U.B., Forster, H.J., Nystrom, J.O., Dulski, P. and Broman, C., 2002. Apatite–monazite relations in the kiirunavaara magnetite- apatite ore, northern Sweden. Chemical Geology, 191(1–3): 47–72. https://doi.org/10.1016/S0009-2541(02)00148-1
Harlov, D.E. and Forster, H.J., 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II, Fluorapatite. American Mineralogist, 88(8–9): 1209–1229. https://doi.org/10.2138/am-2003-8-905
Harlov, D.E., Wirth, R. and Forster, H.J., 2005. An experimental study of dissolution- reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150(3): 268–286. https://doi.org/10.1007/s00410-005-0017-8
Heidarian, H., 2013. Investigation of genetic relations between mimeralization, host rock and metasomatic alterations in Chadormalu iron deposit, Central Iran. M.‌Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 219 pp. (in Persian with English abstract)
Heidarian, H., Alirezaei, S. and Lentz, D., 2017. Chadormalu Kiruna-type magnetite–apatite deposite, Bafq district, Iran: Insights in to hydrothermal alteration and petrogenesis from geochemical, fluid inclusion and sulfur isotope data. Ore Geology Reviews, 83(7): 43–62. https://doi.org/10.1016/j.oregeorev.2016.11.031
Heidarian, H., Lentz, D., Alirezaei, S., Peighambari, S. and Hall, D., 2016. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran. Mineralogy and Petrology, 110(6): 927–942. https://doi.org/10.1007/s00710-016-0440-8
Hooshmandzadeh, A., Nabavi, M.J. and Hamdi, B., 1988. Precambrian-Lower Cambrian rocks in Iran. 1st Conference of Investigation on Resources and Mineral Potential, Yazd University, Yazd, Iran. (in Persian)
Hsieh, P.S., Chen, C.H., Yang, H.J. and Lee, C.Y., 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr–Nd isotope compositions. Journal of Asian Earth Sciences, 33(5-6): 428–451. https://doi.org/10.1016/j.jseaes.2008.02.002
Hughes, J.M. and Rakovan, J., 2002. The crystal structure of apatite, Ca5(PO4) 3 (F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1–12. https://doi.org/10.2138/rmg.2002.48.1
Jami, M., 2005. Geology, Geochemistry and Evolution of the Esfordi Phosphate– Iron deposit, Bafq area, Central Iran. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 220 pp.
Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Economic Geology, 102(6): 1111–128. http://dx.doi.org/10.2113/gsecongeo.104.1.140
Kanazawa, Y. and Kamitani, M., 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408(1): 1339–1343. https://doi.org/10.1016/j.jallcom.2005.04.033
 Kesler, S.E., Reich, M. and Jean, M., 2007. Geochemistry of fluid inclusion brines from Earths oldest Mississippi Valley- type (MVT) deposits. Chemical Geology, 237(3-4): 234–248. https://doi.org/10.1016/j.chemgeo.2006.11.001
Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J. and Coogan, L.A., 2016. Apatite trace element compositions: a robust new tool for mineral exploration. Economic Geology, 111(5): 1187–1222. https://doi.org/10.2113/econgeo.111.5.1187
Mariano, A.N., 1989. Economic geology of Rare earth elements. In: B.R. Lipin and G.A. McKay (Editors), Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, D.C, pp. 309–337. https://doi.org/10.1515/9781501509032-014
Paknejad, H., 1991. Complementary exploration of Esfordi deposit. Geological Survey of Iran, Tehran, Report 11, 89 pp. (in Persian)
Pan, Y. and Fleet. M.E., 2002. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. In: M.J. Kohn, J. Rakovan and J.M. Hughes (Editors), Phosphates: Geochemical, geobiological and material importance. Mineralogical Society of America, Washington, D.C, pp. 13–49. https://doi.org/10.2138/rmg.2002.48.2
Rajabzadeh, M.A., Hoseini. K. and Moosavinasab. Z., 2013. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite. Journal of Economic Geology, 6(2): 331–353. (in Persian with English abstract) https://dx.doi.org/10.22067/ECONG.V6I2.20956  
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622–665. https://dx.doi.org/10.22067/ECONG.V6I2.20956  
Roedder, E., 1984. Inclusion sample selection, preparation, petrography and photography. In: P.H. Ribbi (Editor), Fluid Inclusions. Mineralogical Society America, Washington, D.C, pp. 149–180. https://doi.org/10.1515/9781501508271-009
Roeder, P.L., MacArthur, D., Ma, X.P., Palmer. G.R. and Mariano, A.N., 1987. Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist, 72(7–8): 801–811. Retrieved March 03, 2017 from http://www.minsocam.org/ammin/AM72/AM72_801.pdf
Ronsbo, J.G., 1989. Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74(7–8): 896–901. Retrieved March 02, 2017 http://www.minsocam.org/ammin/am74/am74_896.pdf
Sabet-Mobarhan-Talab, A., Alinia, F., Ghannadpour, F. and Hezarkhani, A.S.S., 2015. Geology and geochemistry, and some genetic discussion of the Chadormalu iron oxide apatite deposite, Bafg District, Central Iran. Arabian Journal of Geosciences, 8(10): 8399–8418. https://doi.org/10.1007/s12517-015-1813-8
Samani, B., 1993. Saghand formation, a riftogenic unit of upper Precambrian in central Iran. Journal of Geosciences, 2(6): 32–45. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6501166
Schandl, E.S. and Gorton, M.P., 2004. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5): 1027–1035. https://doi.org/10.2113/gsecongeo.99.5.1027
Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie Press, London, 239 pp.
Soheili, M. and Mahdavi, M.A., 1991. Geological map of Esfordi, scale 1:100,000. Geological Survey of Iran.
Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70–78. https://doi.org/10.1016/0012-821X(84)90039-6
Torab, F.M., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining District, Central Iran. Ph.D. Thesis, Clausthal University of Technology, Clausthal, Germany, 131 pp.
Townsend, K.J., Miller, C.F.D., Andrea, J.L., Ayers, J.C., Harrison, T.M. and Coath, C.D., 2001. Low temperature replacement of monazite paragenesis in the Ireteba granite, southern Nevada, Geochornological implication. Chemical Geology, 172(1–2): 95–112. https://doi.org/10.1016/S0009-2541(00)00238-2
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55(1–4): 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams-Jones, A.E., Schrijver, K., Doig, R. and Sangster, D.F., 1992. A model for epigenetic Ba-Pb-Zn mineralization in the Appalachian Trust Belt Quebec: Evidence from fluid inclusions and isotopes. Economic Geology, 87(1): 154–174. https://doi.org/10.2113/gsecongeo.87.1.154
Yermacov, N.P. (translated by Sokoloff, V.P.), 1965. Research on the nature of mineral-forming solutions with special reference to data from fluid inclusions, Permagon Press, Oxford, 743 pp.
Zabihi, R. and Hosseini, K., 2016. Mineralogical, geochemical and radioisotopes studies on the REE minerals and apatites from Esfordi and Choghart deposite, NE of Bafgh. 34th National & the 2nd International Geosciences Congress, Geological Survey of Iran, Tehran, Iran. (in Persian with English abstract)