سنگ شناسی، ژئوشیمی و جایگاه زمین ساختی توده های آداکیتی منطقه تیغناب و ارتباط آنها با کانه زایی اسکارن آهن (جنوب خاور سربیشه-خاور ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن، دانشگاه صنعتی بیرجند، بیرجند، ایران

2 گروه زمین شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

منطقه مورد بررسی در بخش خاوری زون جوش‌خورده سیستان و در نقشه زمین ­شناسی 1:100000 ماهیرود قرار‌گرفته است. توده‌های نیمه‌عمیق با ترکیب کلی کوارتزدیوریتی، به درون سنگ آهک و ماسه‌سنگ­ های پالئوسن-ائوسن نفوذ کرده و اسکارن و کانی­ سازی آهن (مگنتیت) را تشکیل داده است. بافت­ های عمده در کوارتزدیوریت پورفیری شامل پورفیری با زمینه ریزدانه و پوئی‌کلیتیک هستند. پلاژیوکلاز، هورنبلند و کوارتز سازنده­ های اصلی این سنگ ­ها هستند. نمودارهای مختلف ژئوشیمیایی نشان‌دهنده انطباق سنگ­ های آذرین تیغناب با نفوذی­ های مرتبط با اسکارن­ های آهن است. ویژگی‌های ژئوشیمیایی مانند میزان میانگین SiO2 (‌64/48 درصد)، Al2O3 (16/68 درصد)، Sr (ppm 470)، Y (ppm9/8)، Sr/Y (58/55)، Yb (ppm89/0) و آنومالی منفی ضعیف Eu، نشان‌دهنده ماهیت آداکیتی و از نوع پرسیلیس برای این سنگ­ ها‌ست. میزان Mg# (48/55 تا 1/68)، Sr/Y (میانگین 58/55)، Th/La (میانگین 32/0)، La/YbN (میانگین 2/4) و Th (میانگین ppm 8/1) نشان­ دهنده ذوب پوسته اقیانوسی فرورونده با ترکیب گارنت ­آمفیبولیتی برای تشکیل ماگمای آداکیتی است.  

کلیدواژه‌ها


Ahmadi Khalaji, A., Esmaeily, D., Valizadeh, M.V. and Rahimpour-Bonab, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29‌(5–6) :859–877.
Angiboust, S., Agard, P., De Hoog, J.‌C.‌M., Omrani, J. and Plunder, A., 2013. Insights on deep, accretionary subduction processes from the Sistan ophiolitic “mélange” (Eastern Iran). Lithos, 156–159: 139–158.
Ayers, J.‌C., 1998.Trace element modeling for aqueous fluid–peridotite inter action in the wedge of subduction zones. Contributions to Mineralogy and Petrology, 132(4): 390–404.
Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80(1–4): 155–177.
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson, (Editor), Rare Earth Element Geochemistry. Elsevier Science Publishing Company, New York, pp. 63–114.
Bröcker, M., Rad, G.‌F., Burgess, R., Theunissen, S., Paderin, I., Rodionov, N. and Salimi, Z., 2013. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran. Lithos, 170–171: 17–34.
Camp, V.E. and Griffis, R., 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15(3): 221–239.
Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 257–268.
Castillo, P.R., 2012. Adakite petrogenesis.  Lithos, 134–135: 304–316
Chappell, B.W. and Stephens, W.E., 1988. Origin of infracrustal (I–type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2–3):71–86.
Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. George Allen and Unwin, London, 450 pp.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modem arc magmas by melting of young subduction lithosphere. Nature, 347(6294): 662–665.
Drummond, M.S. and Defant, M.J., 1990. A model for trondhjenite–tonalite–dactite genesis and crustal growth via slab melting: Archean to modern composition. Journal of Geophysical Research, 95 (B13): 21503–21521.
Eyuboglu, Y., Santosh, M. and Chung, S.L., 2011. Crystal fractionation of adakitic magmas in the crust–mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the seme adakites, Eastern Pontides, NE Turkey. Lithos, 121(1–4): 151–166.
Eyuboglu, Y., Santosh, M., Yi, K., Bektaş, O. and Kwon, S., 2012. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region. Lithos, 146: 218–232.
Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Lin, W.L., Ayers, J., Wang, X.C. and Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892–897.
Gregorová, D., Hrouda, F., and Kohút, M., 2003. Magnetic susceptibility and geochemistry of Variscan West Carpathian granites: implications for tectonic setting. Physics and Chemistry of the Earth, 28(16–19): 729–734.
Guillou, Y., Maurizot, P. and De La Villeon, H., 1981. Geological map of Mahirud, Scale 1:100000. Geological Survey of Iran.
Guillou, Y., Maurizot, P., Vaslet, D. and De La Villeon, H., 1990. Explanatory text of the Gazik quadrangle map 1:250000. Geological Survey of Iran, Tehran, Report L8, 200 pp.
Guo, F., Nakamura, E., Fan, W., Kobayashi, K., Li, C. and Gao, X., 2009.Mineralogical and geochemical constraints on magmatic evolution of Paleocene adakitic andesites from the Yanji area, NE China. Lithos, 112(3): 321–341.
Hastie, A.R., Kerr, A., McDonald, I., Mitchell, S.F., Pearce, J.A., Millar, I.L., Barfod, D. and Mark, D.F., 2010. Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust? Chemical Geology, 276(3–4): 344–359.
Humphreys, M.‌C.‌S., Blundy. J.‌D. and Sparks R.S.‌J., 2006. Magma evolution and open–system processes at Shiveluch volcano: insights from phenocryst zoning. Journal of Petrology, 47 (12): 2303–2334.
Ionov, D.‌A. and Hofmann, A.‌W., 1995‌. Nb–Ta–rich mantle amphiboles and micas implications for subduction–related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131(3–4) :341–356.
Irvine, T.‌N. and Baragar W.‌R., 1971‌. A guide to the chemical classification of the common igneous rocks. Canadian Journal of Earth Sciences, 8‌(5): 523–548.
Ishihara, S., 1977. The magnetite series and ilmenite series granitic rocks. Mining Geology, 27‌(145): 293–305.
Karimzadeh Somarin, A., Moayyed, M., 2002. Granite–and gabbrodiorite–associated skarn deposits of NW Iran. Ore Geology Reviews, 20(3–4): 127–138.
Kocak, K., Zedef, V. and Kansun, G., 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, central southern Turkey: Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1–4): 149–167.
Kuscu, G.G. and Geneli, F., 2010. Review of post–collisional volcanism in the central Anatolian volcanic province (Turkey), with special reference to the Tepekoy volcanic complex. International Journal of Earth Sciences, 99(3): 593–621.
Lange, R.‌A., Frey, H.‌M. and Hector, J., 2010. A thermodynamic model for the plagioclase–liquid hygrometer/ thermometer.‌ American Mineralogist, 94(4): 494–506.
Lei, X.‌F., Duan, D.‌F., Jiang, S.‌Y. and Xiong, S.‌F., 2018. Ore–forming fluids and isotopic (HOCS–Pb) characteristics of the Fujiashan–Longjiaoshan skarn W–Cu–(Mo) deposit in the Edong District of Hubei Province, China. Ore Geology Reviews, 102: 386–405.
Ma, Q., Zheng, J.P., Xu, Y.G., Griffin, W.L. and Zhang, R.S., 2015. Are continental "adakites" derived from thickened or foundered lower crust? Earth and Planetary Science Letters, 419(02): 125–133.
Mao, Q., Yu, M., Xiao, W., Windley, B.‌F., Li, Y., Wei, X., Zho, J. and Lü, X., 2018. Skarn–mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian–early Carboniferous in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365–378.
Martin, H., Smithies, R.‌H., Rapp, R., Moyen, J.‌F. and Champion, D., 2005. An overview of adakite,‌ tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24.
Mazhari, S.‌A., 2016. Petrogenesis of adakite and high–Nb basalt association in the SW of Sabzevar Zone, NE of Iran: Evidence for slab melt–mantle interaction. Journal of African Earth Sciences, 116: 170–181.
Mazhari, N., Malekzadeh Shafaroudi, A. and Ghaderi, M., 2015. Geology, mineralogy and geochemistry of Ferezneh ferromanganese anomaly, east of Sangan mines complex, NE Iran. Journal of Economic Geology, 7(1): 23–37. (in Persian with English abstract)
Mazhari, M., Mazaheri, S.A., Saadat, S. and Homam, S.M., 2018. Mineralogical and Geochemistry of intrusive rocks south of Moein Abad (East Iran, Zirkouh Qaen). Iranian Journal of Crystallography and Mineralogy, 26(1): 149–160. (in Persian with English abstract) 
Meinert, L.D., 1995. Compositional variation of igneous rocks associated with skarn deposits – chemical evidence for a genetic connectionbetween petrogenesis and mineralization. In: J.F.H. Thompson (Editor), Magmas, fluids, and ore deposits. Mineralogical Association of Canada, Short Course Series, Canada, pp. 401–418.
Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005. World skarn deposits. In: J.‌W. Hedenquist, J.‌F.‌H. Thompson, R.J, Goldfarb and J.‌P. Richards (Editors), Economic geology, One hundredth anniversary volume, Society of economic geologists, Colorado, pp. 299–336.
Moyen, J.‌F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature. Lithos, 112(3–4): 556–574.
Nakhaei, M., Mazaheri, S.‌A., Karimpour, M.‌H., Farmer, G.‌L., Stern, C.‌R. and Zarrinkoub, M.‌H., 2014. Petrogenesis and zircon U-Pb dating of skarnified  pyroxene bearing dioritic rocks in Bisheh area (South of Birjand, East of Iran). Journal of Economic Geology, 6(2): 393–409. (In Persian with English abstract)
Nakhaei, M., Mazaheri, S.‌A., Karimpour, M.‌H., Stern, C.‌R., Zarrinkoub, M.‌H., and Mohammadi, S.‌S., 2015. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran. Arabian Journal of Geosciences, 8(10): 8481–8495.
Pang, K.‌N., Chung, S.‌L., Zarrinkoub, M.‌H., Khatib, M.‌M., Mohammadi, S.‌S., Chiu, H.‌Y., Chu, H.‌Ch., Lee, H.Y. and Lo, C.‌H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180–181: 234–251.
Pearce, J., 1996. A user’s guide to basalt discrimination diagrams. In D.A. Wyman (Editor), Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12, Canada, pp.79–114.
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25‌(4): 956–983.  
Pearce, J.‌A. and Peate, D.‌W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285.
Pons, J.‌M., Franchini, M., Meinert L.D., Recio, C. and Etcheverry, R., 2009.Iron Skarns of the Vegas Peladas District, Mendoza, Argentina. Economic Geology, 104(2): 157–184.
Rapp, R.‌P. and Watson, E.‌B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology, 36(4): 891–931.
Rasouli, R., 2015. Geochemostry, mineralogy and genesis of Tighe noab Fe–Cu deposit. M.Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 204 pp. (in Persian with English abstract)
Roberts, M.P., Clemens, J.D., 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21(9): 825–828.
Saadat, S., 2017, Geology, geochemistry and ground magnetic survey on Kalateh Naser iron ore deposit, Khorasan Jonoubi province. Journal of Economic Geology, 8(2):593–607. (in Persian with English abstract)
Sepidbar, F., Mirnejad, H., Li, J.‌W., Wei, C., George, L.‌L. and Burlinson, K., 2017. Mineral geochemistry of the Sangan skarn deposit, NE Iran: Implication for the evolution of hydrothermal fluid. Chemie der Erde-Geochemistry, 77(3): 399–419.
Shand, S.J., 1943. The eruptive rocks. John Wiley, New York, 444 pp.
Shcherbakov, V.‌D., Plechov, P.‌Y., Izbekov, P.E. and Shipman, J.‌S., 2011. Plagioclase zoning as an indicator  of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1): 83–99.
Stalder, R., Foley, S.‌F., Brey, G.‌P. and Horn, I. 1998‌. Mineral–aqueous fluid partitioning of trace –Elements at 900–1200 ºc and 3–5.7 GPA: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 62(10): 1781–1801.
Sun, S.S. and McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: A.D. Saunders, M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society, London, pp. 313–345.
Tatsumi, Y., Eggins, S.M., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge, 211 pp.
Tirrul, R., Bell, L.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran.  Geological Society of America Bulletin, 94(1): 134–150.
Wang, X.‌L., Shu, X.‌J., Xu, X., Tang, M. and Gaschnig, R., 2012. Petrogenesis of the Early Cretaceous adakite–like porphyries and associated basaltic andesites in the eastern Jiangnan orogen, southern China. Journal of Asian Earth Sciences, 61: 243–256.
Wang, C.‌M., Zhang, L., Chen, H., Tang, H., Chen, Y.‌J., Dong, L.‌H., Qu, X., Zheng, Y., Li, D.F. and Fang, J., 2018. Geochronology, geochemistry and tectonic significance of the ore–associated granites at the Kaladawan Fe–Mo ore field (Altyn), NW China. Ore Geology Reviews, 100: 457–470.
Wang, B.Q., Zhou, M.F., Jian–Wei Li, J.W. and Dan–Ping Yan, D.P., 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri–La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization. Lithos, 127: 24–38.
Wang, Q., Xu, J.‌F., Jian, P., Bao, Z.‌W., Zhao, Z. H., Li, C. F., Xiong, X.‌L. and Ma, J.‌L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119–144.
Whalen, J.B., Percival, J.A., McNicoll, V.J. and Longstaffe, F.J., 2002. A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. Journal of Petrology, 43(8): 1551–1570.
White, A.J.R. and Chappell, B.W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In: J.‌A. Roddick (Editor), Circum–Pacific Plutonic Terranes. Geological Society of America Memoir, Colorado, pp. 21–34.
Whitney, D. and Evans, B., 2010.Abbreviations for names of rock–forming minerals. American Mineralogist, 95(1): 185–187.
Xu, J., Zheng, Y.‌Y., Sun, X. and Shen, Y.‌H., 2016. Geochronology and petrogenesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt, southern Tibet. Journal of Asian Earth Sciences, 120: 100–116.
Yang, J.H., Wu, F.Y., Wilde, S.A., Xie, L.W., Yang, Y.H. and Liu, X.M., 2007. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf–isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190.
Yao, L., Lü, Z., Zhao, C., Pang, Z., Yu, X., Yang, T., Li, Y., Liu, P, and Zhang, M., 2017. Zircon U–Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China. Ore Geology Reviews, 91: 387–403.
Yari, F., Zarrinkoub, M.H. and Mohammadi, S.S., 2014. Petrography and mineralogy of intrusive and subvolcanic rocks related to skarn in north kalate shab area (North of Doroh, south of Gazik). 6th symposium of Iranian Society of Economic Geology, University of Sistan and Baluchestan, Zahedan, Iran. (in Persian with English abstract)
Zarrinkoub, M.H., Ketabi, P., Shiva, M. and Asgari, M., 2011. Mineralogy of Haj Elyas iron deposit, northwest of Nehbandan, East of Iran. Iranian Journal of Crystallography and Mineralogy, 19(1): 73–82. (in Persian with English abstract)
Zarrinkoub, M.‌H., Pang, K.‌N., Chung, S.‌L., Khatib, M.‌M., Mohammadi, S.‌S., Chiu, H‌.Y. and Lee, H.‌Y., 2012. Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154: 392–405.
Zheng, K., Wu, C., Lei, M., Zhang, X., Chen, H., Wu, D. and Gao, D., 2019. Petrogenesis and tectonic implications of granitoids from western North Altun, Northwest China. Lithos, 340–341: 255–269.