ترکیب شیمیایی سیالات درگیر در کانسار آهن جلال آباد، شمال غرب زرند با استفاده از روش میکروآنالیز LA-ICP-MS

نوع مقاله : علمی- پژوهشی

نویسندگان

خوارزمی

چکیده

روش میکروآنالیز LA-ICP-MS برای آنالیز ترکیب سیال‌های درگیر واقع در کانسار آهن جلال‌آباد استفاده شد. نمونه های مورد بررسی از گمانه های حفاری شده و پیت معدن که با کانی سازی ارتباط داشتند، برداشت شده است. سیالات درگیر چند فازی (L+V+S) در کوارتز فراوان است و دمای همگن شدن آنها 260 تا 440 درجه سانتی‌گراد است. شوری سیالات بین 30 تا 52 درصد معادل وزنی نمک طعام است. نتایج LA-ICP-MS روی سیالات درگیر نشان داد که مقدار Fe و Cu به‌ترتیب تا 16076 و 3204 گرم بر تن و میانگین 6914 و 792 گرم بر تن هستند. مقدار Na در سیالات درگیر بین 26906 تا 140716 گرم بر تن و K در محدوده 2372 تا 70484 گرم بر تن اندازه‌گیری شد. نسبت Ca/K بین 53/0 تا 68/8 و با میانگین 75/1 است که نشان‌دهنده اختلاط سیالات ماگمایی و غیر ماگمایی است. نسبت Mn/Fe در سیالات درگیر در محدوده 21/0 تا 87/1 است که نشان‌دهنده حضور دو نوع سیال اکسیدی و احیایی است. نتایج به‌دست آمده از بررسی‌های کانی شناسی، میکروترمومتری و شیمی سیالات درگیر نشان می دهد سیالات ماگمایی- گرمابی حاوی فلزات، سیالات گرمابی- غیر ماگمایی و اختلاط آنها با یکدیگر علت کانی سازی اکسید آهن- مس- طلا در کانسار جلال آباد بوده است.

کلیدواژه‌ها


Appold, M.S., Numelin, T.J., Shepherd, T.J. and Chenery, S.R., 2004. Lim it’s on the metal content of fluid inclusions in gangue minerals from the Viburnum Trend, southeast Missouri, determined by laser ablation ICP-MS. Economic Geology, 99(1):185-198.
Appold, M.S. and Wenz, Z.J., 2011. Composition of Ore Fluid Inclusions from the Viburnum Trend, Southeast Missouri District, United States: Implications for Transport and Precipitation Mechanisms. Economic Geology, 106(1): 55-78.
Baker, T., Mustard, R., Williams, P.J., Dong, G., Fisher, L., Mark, G. and Ryan, C.G., 2008. Mixed messages in iron-oxide-copper-gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Mineralium Deposita, 43(6): 599–608.
Barton, M.D. and Johnson, D.A., 2004. Footprints of Fe-oxide (Cu-Au) systems: University of Western Australia. Centre for Global Metallogeny Special Publication, 33:112–116.
Barton, M.D., Kreiner, D.C., Jensen, E.P. and Girardi, J.D., 2011. Superimposed hydrothermal systems and related IOCG and porphyry mineralization near Copiapo. Proceedings of the 11th Biennial SGA Meeting, Society for Geology Applied to Ore Deposits, Antofagasta, Chile.
Fisher, L.A. and Kendrick, M.A., 2008. Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: Evidence from noble gases and halogens. Mineralium Deposita, 43(5): 483–497.
Gillen, D., 2010. A study of IOCG-related hydrothermal fluid in the Wernecke Mountains, Yukon Territory, Canada. Ph.D. thesis, James Cook University, Queensland, Australia, 562 pp.
Graupner, T., Bratz, H. and Klemd, R., 2005. LA-ICP-MS micro-analysis of fluid inclusions in quartz using a commercial Merchantek 266 nm Nd:YAG laser: a pilot study. Euroupian Journal of Mineralogy, 17(1): 93–102.
Groves, D.I., Bierlein, F.P., Meinert, L.D. and Hitzman, M.W, 2010. Iron oxide copper–gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105(3):641–654.
Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58(1-4): 241-287.
Huckriede, R., Kursten, M. and Venzlaff, H., 1962. Geology of Kerman and Saghand. Geological Survey of Iran, Tehran, Report 51, 197 pp.
Hunt, J.A., Baker, T., Cleverly, J., Davidson, G.J., Fallick, A.E. and Thorkelson, D.J., 2011. Fluid inclusion and stable isotope constraints on the origin of Wernecke Breccia and associated iron oxide–copper–gold mineralization, Yukon. Canadian Journal of Earth Sciences, 48(10): 1425–1445.
Mehrabi, B and Karimi, B., 2003. Jalal-Abad as a hydrothermal iron oxide deposit. The 22nd Geosciences Symposium, Geological Survey of Iran, Tehran, Iran.
Nabavi, M.H., 1979. An introduction to geology of Iran. Geological Survey of Iran, Tehran, 110 pp. (in Persian)
Pollard, P.J., 2006. An intrusion-related origin for Cu–Au mineralization in iron oxide– copper–gold (IOCG) provinces. Mineralium Deposita, 41(2): 179–187.
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7): 622-665.
Rieger, A.A., Marschik, R. and Diaz, M., 2010. The hypogene iron oxide copper–gold mineralization in the Mantoverde District. Northern Chile. Economic Geology, 105(7): 1271–1299.
Roeder, E., 1984. Fluid Inclusions. Mineralogical Society of America, Washington, 644 pp.
Shepherd, T.J. and Chenery, S.R., 1995. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study. Geochimica et Cosmochimica Acta, 59(19):3997−4007.
Stoffell, B., Wilkinson, J.J. and Jeffries, T.E., 2004. Metal transport and deposition in hydrothermal veins revealed by 213nm UV laser ablation microanalysis of single fluid inclusions. American Journal of Science, 304(6): 533−557.
Stosch, H.G., Romer, R.L. and Daliran, F., 2011. Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Mineralium Deposita, 46(1): 9–21.
Technoexport., 1976. Results of the survery of Zarand ore deposite. National Iranian Steel Company, Tehran, 104 pp.
Vahdati Daneshmand, F., 1990. Geological studies of Zarand area.Geological Survey of Iran, Tehran, 100 pp.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229–272.
Wilkinson, J.J., Stoffell, B., Wilkinson, C.C., Jeffries, T.E. and Appold, M.S., 2009. Anomalously metal-rich fluids from hydrothermal ore deposits. Science, 323(5915): 764−767.
Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., DeHaller, A., Mark, G., Oliver, N.H.S. and Marschik, R., 2005. Iron oxide copper-gold deposits: geology, space-time distribution and possible modes of origin. Economic Geology, 100(100th Ann): 371–405.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187.
Yardley, B.W.D., 2005. 100th Anniversary Special Paper: metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100(4): 613–632.
Yardley, B.W.D. and Graham, J .T. 2002. The origin of salinity in metamorphic fluids. Geofluid, 2(4): 249-256.
Zhang, H.F., Zhu, R.X., Santosh, M., Ying, J.F., Su, B.X. and Hu, Y., 2013. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: implications for craton destruction. Gondwana Research, 23(1): 95–107.
CAPTCHA Image