منشأ سیال کانه‌ ساز در کانسار مگنتیت-آپاتیت چغارت، شمال‌ شرق بافق: شواهدی از کانی‌ شناسی، زمین‌ شیمی، ریزدماسنجی و ایزوتوپ‌ های پایدار (O-C و O-H) و ناپایدار (U-Pb و Nd-Sm)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، بخش علوم زمین، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

2 دانشیار، بخش علوم زمین دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان، کرمان، ایران

3 کارشناسی ارشد، شرکت سنگ آهن مرکزی، ایران، بافق، یزد، ایران

چکیده

بررسی‌های سنگ‌شناسی، زمین‌شیمی و ایزوتوپی بر روی کانسنگ مگنتیت- آپاتیت و دگرنهادی‌های آلبیت‌دار کانسار چغارت بیانگر تنوع کانی‌زایی با منشأ متفاوت است. بررسی‌های ایزوتوپ‌های پایدار O-H و ایزوتوپ‌های ناپایدار Nd-Sm بر روی کانی‌های آپاتیت نسل اول مرتبط با کانسنگ مگنتیت و نسبت‌های Sr در مقابلMn  در هر دو نسل آپاتیت، منشأ رسوبی آنها را نشان می‌دهد. از طرف دیگر، بررسی‌های ریزدماسنجی بر روی میان‌بارهای سیال در آپاتیت نسل اول و ایزوتوپ‌های پایدار O-C بر روی کلسیت‌های هم‌یافت با آلبیت‌های نسل دوم و سوم در پهنه‌های دگرنهادی و وجود بافت‌های برون‌رستی ایلمنیت در کانی مگنتیت، تلفیقی از فراینـدهای ماگمایی و گرمابی دما بالا را به نمایش می‌گذارد. تفاوت سنی آپاتیت‌های نسل اول و مونازیت‌های مرتبط با این آپاتیت‌ها به روش 238U/206Pb و 207Pb/206Pb نشان‌دهنده عملکرد سیالات کانی‌زا در بازه‌های زمانی مختلف است. بر اساس پژوهش، کانی‌زایی در کانسار مگنتیت- آپاتیت چغارت منشأ چندزادی دارد. این مسئله نقشی مهم در درک فرایندهای کانی‌زایی و مدل‌های اکتشافی کانسارهای آهن-فسفات گستره معدنی بافق دارد.

کلیدواژه‌ها


Allen, J.R. and Wiggins, W.D., 1993. Dolomite reservoir: geochemical techniques for evaluation, origin and distribution. American Association of Petroleum Geologists, Tulsa, Oklahoma, 129 pp.
Andreoli, M.A.G., Smith, C.B., Watkeys, M., Moore, J.M., Ashwal, L.D. and Hart, R.J., 1994. The geology of the Steenkampskraal monazite deposit, South Africa: Implications for REE-Th-Cu mineralization in charnockitegranuliteterranes. Economic Geology, 89(5): 994–1016. https://doi.org/10.2113/gsecongeo.89.5.994
Asran, M., Ezzat, M. and Rahman, A., 2012. The Pan-African calck-alkaline granitoids and the associated mafic microgranular enclaves (MME) around Wadi Abu Zawal area, North Eastern desert, Egypt: geology, geochemistry and petrogenesis. Journal of Biology and Earth Sciences, 2(1): 1–16. Retrieved July 11, 2019 from https://www.researchgate.net/publication/268407031_The_Pan-African_calc-alkaline_granitoids_and_the_associated_mafic_microgranular_enclaves_MME_around_Wadi_Abu_Zawal_area_North_Eastern_Desert_Egypt_geology_geochemistry_and_petrogenesis
Atherton, M.P. and Ghani, A.A., 2002. Slab Breakoff: a model for Caledonian, late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62(3–4): 65–85. https://doi.org/10.1016/S0024-4937(02)00111-1
Bell, A.S. and Simon, A., 2011. Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology, 39(5): 499–502. https://doi.org/10.1130/G31828.1
Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S. and Ghazban, F., 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chemical Geology, 281(3–4): 253–269. https://doi.org/10.1016/j.chemgeo.2010.12.013
Boynton, W.V., 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry, (Developments in Geochemistry2). Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Craig, J.R. and Vaughan, D.J., 1994. Ore microscopy and ore petrography. John Wiley& Sons Inc, Hoboken, 424 pp.
Cuney, M., Emetz, A., Mercadier, J., Mykchaylov, V., Shunko, V. and Yuslenko, A., 2012. Uranium deposits associated with Na-metasomatism from Central Ukraine: a review of some of the major deposits and genetic constraints. Ore Geology Reviews, 44(4): 82–106. https://doi.org/10.1016/j.chemgeo.2010.12.013
 Daliran, F., Stosch, H.G. and Williams, P., 2007. Multi stage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and “apatitites” of the Bafq district, Central-East Iran. Proceedings of the 9th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Irish Association for Economic Geology, Dublin, Ireland.
Daliran, F., Stosch, H.G. and Williams, P., 2010. Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, East-Central Iran. In: L. Corriveau and H. Mumin (Editors), Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geologists Association, Canada, pp. 143–155. Retrieved May 06, 2018 from https://www.researchgate.net/publication/292809554_Early_Cambrian_iron_oxide-apatite-REE_U_deposits_of_the_Bafq_District_east-central_Iran
Dehghan, A.H., 2011. Geologycal prospecting plan of the Choghart deposite, scale 1:4200. Central Iron Ore Company. (in Persian)
Edfelt, A., 2007. The tjarrojakka apatite-iron and Cu(-Au) deposits, Northern Sweden, division of ore geology and applied geophysics. Ph.D. Thesis, Lulea University of Technology, Lulea, Sweden, 230 pp.
Fan, H.R., Groves, D.I., Mikucki, E.J. and McNaughton, N.J., 2000. Contrasting fluid types at the Nevoria gold deposit in the Southern cross greenstone belt, Western Australia: Implications of auriferous fluids depositing ores within and Archean banded iron-formation. Economic Geology, 95(7): 1527–1536. https://doi.org/10.2113/gsecongeo.95.7.1527
Felitsyn, S.B. and Gubanov, A.P., 2002. Nd isotope composition of early Cambrian discrete basins. Geological Magazine, 139(2): 159–169. https://doi.org/10.1017/S0016756801006252
Forster, H., Jafarzadeh, A., 1994. The Bafq mining district in central Iran-a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8): 1697–1721. https://doi.org/10.2113/gsecongeo.89.8.1697
 
Forster, H.J. and Borumandi, H., 1971, Neoprecambrian magnetite lava and magnetite tuffs from the Central Iran. Naturwissenschaften, 58(10): 524–524. https://doi.org/10.1007/BF00623323
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in kiruna-type iron ores and some other iron ore type. Ore Geology Reviews, 9(6): 489-510. https://doi.org/10.1016/0169-1368(94)00015-G
Gaetani, G.A., 2004. The influence of melt structure on trace element partitioning near the peridotite solidus. Contributions to Mineralogy and Petrology, 147(5): 511–527. https://doi.org/10.1007/s00410-004-0575-1
Giritharan, T.S. and Rajamani, V., 2001. REE geochemistry of ore zones in the Archean auriferous schist belts of the Eastern Dharwar Craton, South India. Journal of Earth System Science, 110(2): 143–159. https://doi.org/10.1007/BF02702214 
Green, N.L., 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, Northern Cascadia subduction system. Lithos, 87(1–2): 23–49. https://doi.org/10.1016/j.lithos.2005.05.003
Haghipour, A. and Pelissier, G., 1977. Geology of the Saghand sector. In: A. Haghipour, N. Valeh, G. Pelissier and M. Davoudzadeh (Editors), Explanatory text of the Ardekan quadrangle map. Geological Survey of Iran, Iran, pp. 10–68.
Harlov, D.E., 2015. Apatite: a fingerprint for metasomatic processes. Elements magazine, 11(3): 171–176. https://doi.org/10.2113/gselements.11.3.171
Harlov, D.E., Anderson, U.B., Forster, H.J., Nystrom, J.O., Dulski, P. and Broman, C., 2002. Apatite-monazite relations in the kiirunavaara magnetite-apatite ore northern Sweden. Chemical Geology, 191(1–3): 47–72.
Harlov, D.E. and Forster, H.J., 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment (PartII, Fluorapatite). American Mineralogist, 88(8–9): 1209–1229. https://doi.org/10.2138/am-2003-8-905
Harris, C., 1983. The petrology of lavas and associated plutonic of Ascension Island. Journal of Petrology, 24(4): 424–470. https://doi.org/10.1093/petrology/24.4.424
Heidarian, H., Alirezaei, S. and Lentz, D., 2017. Chadormalu kiruna-type magnetite- apatite deposite, Bafq district, Iran: Insights in to hydrothermal alteration and petrogenesis from geochemical, fluid inclusion and sulfur isotope data. Ore Geology Reviews, 83(7): 43–62. https://doi.org/10.1016/j.oregeorev.2016.11.031
Heidarian, H., Lentz, D., Alirezaei, S., McFarlane, C. and Peighambar, S., 2018. Multiple stage ore formation in the Chadormalu iron deposit, Bafq metallogenic province, Central Iran: evidence from BSE imaging and apatite EPMA and LA-ICP-MS U-Pb geochronology. Minerals, 8(3): 87–117. https://doi.org/10.3390/min8030087
Horgarth, D.D., 1989. Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: K. Bell (Editor), Carbonatites: genesis and evolution. Unwin Hyman, London, pp. 105–148.
Hosseini, K. and Shahpasandzadeh, M., 2020. Tectono-magmatic setting of the Albite-bearing metasomatite of the Ghoghart magnetite-apatite ore deposits, Bafq, Central Iran. Journal of Geosciences, 30(118): 81–94. http://dx.doi.org/10.22071/gsj.2020.215856.1744
Huang, S., Song, Y., Houb, Z. and Xue, C., 2016. Chemical and stable isotopic (B, H, and O) compositions of tourmaline in the Maocaoping vein-type Cu deposit, western Yunnan, China: constraints on fluid source and evolution. Chemical Geology, 439(6): 173–188. https://doi.org/10.1016/j.chemgeo.2016.06.031
Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Economic Geology, 102(6): 111–128. https://doi.org/10.2113/gsecongeo.102.6.1111
Kesler, S.E., Reich, M. and Jean, M., 2007. Geochemistry of fluid inclusion brines from earths oldest Mississippi Valley-Type (MVT) deposits. Chemical Geology, 237(3–4): 234–248. https://doi.org/10.1016/j.chemgeo.2006.11.001
Küster, D. and Harms, U., 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos, 45(1–4): 177–195. https://doi.org/10.1016/S0024-4937(98)00031-0
Majidi, S.A., Omrani, J., Troll, V.R., Weis, F.A., Houshmandzadeh, A., Ashouri, E. and Chung, S.L., 2021. Employing geochemistry and geochronology to unravel genesis and tectonic setting of iron oxide-apatite deposits of the Bafq-Saghand metallogenic belt, Central Iran. International Journal of Earth Sciences, 110(1): 127–164. https://doi.org/10.1007/s00531-020-01942-5
McCulloch, M.T. and Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102 (3–4): 358–374. https://doi.org/10.1016/0012-821X(91)90029-H
Mohseni, S. and Aftabi, A., 2015. Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran. The possible Ediacaran missing link of BIFs in Tethyan metallogeny. Ore Geology Review, 71(7): 215–236. https://doi.org/10.1016/j.oregeorev.2015.05.018
Mokhtari, M.A.A., Emami, M.H. and Hosseinzadeh, Gh., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Sciences, 122(3): 795–803. https://doi.org/10.1007/s12040-013-0313-z
Moore, F. and Modabberi, S., 2003. Origin of Choghart iron oxide deposit, Bafq District, Central Iran: new isotopic and geochemical evidence. Journal of Sciences, Islamic Republic of Iran, 14‌(3): 259–269. Retrieved June 27, 2021 from https://www.sid.ir/en/journal/ViewPaper.aspx?id=33257.
Nayebi, N.D., Esmaeily, D.M., Chew, Lehmann, B. and Modabberia, S., 2021. Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geology Review, 132(1–4). https://doi.org/10.1016/j.oregeorev.2021.104054
Pearce, J.A. and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
Prokoph, A., Shields, G.A. and Veizer, J., 2008. Compilation and time-seriesanalysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through earth history. Earth- Science Reviews, 87(3-4): 113-133. https://doi.org/10.1016/j.earscirev.2007.12.003
Rahimi, A., 2015. Geochemical and economic geological survey of rare elements in the Lake siysh iron-apatite deposition, Northeast Bafgh. M.Sc. Thesis, Amirkabir University of Technology, Tehran, Iran, 147 pp.
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis andimplications for Gondwana tectonics. American Journal of Science, 303(7): 622–665. https://doi.org/10.2475/ajs.303.7.622
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295–332. https://doi.org/10.2113/econgeo.107.2.295
Roedder, E., 1984. Inclusion sample selection, preparation, petrography and photography. In: P.H. Ribbi (Editor), Fluid Inclusions. Mineralogical Society America, Washington, D.C, pp. 149–180. https://doi.org/10.1515/9781501508271-009
Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, New York, 359 pp.
Ronchi, P., Masetti, D., Tassan, S. and Camocino, D., 2012. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: a hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy). Marine and Petroleum Geology, 29(1): 68–89. https://doi.org/10.1016/j.marpetgeo.2011.09.004
Ruzicka, V., 1990. Vein uranium deposits. Ore Geology Review, 8(3–4): 247–276. https://doi.org/10.1016/0169-1368(93)90019-U
Schandl, E.S. and Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, 97(3): 629–642. https://doi.org/10.2113/gsecongeo.97.3.629
Schandl, E.S. and Gorton, M.P., 2004. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5): 1027–1035. https://doi.org/10.2113/gsecongeo.99.5.1027
Sha, L.K. and Chappell, B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861–3881. https://doi.org/10.1016/S0016-7037(99)00210-0
Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie Press, London, 239 pp.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalt: implication for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Journal of Geological Society, London, pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Taghipour, S., Kananian, A. and Khalili, M., 2013. Sodic- Calcic alteration in the host rocks of the Esfordi magnetite- apatite deposit. Iranian Journal of Petrology, 4(13): 67–80. (in Persian) Retrieved June 14, 2016 from https://www.sid.ir/fa/journal/ViewPaper.aspx?id=206317
Taylor, R.G., 1992. Ore textures: recognition and interpretation. Economic Geology Research Unit, Australia, 287 pp.
Tian, L., Castillo, P.R., Hawkins, J.W., Hilton, D.R., Hanan, B.H. and Pietruszka, A.J., 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the centeral Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178(4): 657–670. https://doi.org/10.1016/j.jvolgeores.2008.06.039
Torab, F.M., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq Mining District, Central Iran. Ph.D. Thesis, Clausthal University of Technology, Clausthal, Germany, 131 pp.
Torab, F.M. and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district. Central Iran: apatite geochemistry and monazite geochronology. Mineralogical magazine, 71(3): 347–363. https://doi.org/10.1180/minmag.2007.071.3.347
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock- forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams-Jones, A.E., Schrijver, K., Doig, R. and Sangster, D.F., 1992. A model for epigenetic Ba-Pb-Zn mineralization in the Appalachian Trust Belt Quebec: Evidence from fluid inclusions and isotopes. Economic Geology, 87(1): 154–174. https://doi.org/10.2113/gsecongeo.87.1.154
Williams-Jones, A.E., 2015. The hydrothermal mobility of the rare earth elements. British Columbia Geological Survey, 3(03): 119–123. https://doi.org/10.2113/gselements.8.5.355
Wilson, B. M., 1989. Igneous petrogenesis a global tectonic approach. Springer Science and Business Media, London, 466 pp.
Witford, D.J., Korsch, M.J., Porritt, P.M. and Craven, S.J., 1988. Rare earth elemnt mobility around the volcanogenic polymetallic massive sulfide deposit at Que river, Tasmania, Australia. Chemical Geology, 68(1–2): 105–119. https://doi.org/10.1016/0009-2541(88)90090-3
Wu, F., Jahn, B., Wildec, S.A., Lod, C.H., Yuie, T.F., Lina, Q., Gea, W. and Suna, D., 2003. Highly fractionated I-type granites in NE China II: isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3–4): 191–204. https://doi.org/10.1016/S0024-4937(03)00015-X
Yermacov, N.P. (translated by Sokoloff, V.P.), 1965. Research on the nature of mineral-forming solutions with special reference to data from fluid inclusions, Permagon Press, Oxford, 743 pp.
Yoshida, T., Okamura, S., Sakamoto, I., Ikeda, Y., Adachi, Y., Kojima, M., Sugawara, M. and Shitahaku, R., 2013. Petrology of felsic rocks dredged from the Myojin Seamount and the Myojin Rift in the north Izu-Bonin arc- Contribution of intra-oceanic subduction system to making continental middle crust. Meeting of International Association of Volcanology and Chemistry of the Earth's Interior, IAVCEI Scientific Assembly Kagoshima, Kagoshima, Japan.
Zahedi, A. and Hosseini, K., 2014. Petrology and geochemistry of radioactive rocks in the East and South East Choghart deposite-Yazd. National Conference on Applied Research in Economic and Engineering Geology, Ahar Branch, Islamic Azad University, Tabriz, Iran.
Zhang, H., Zhang, L., Harris, N., Jin, L. and Honglin, Y., 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan- Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1): 75–88. https://doi.org/10.1007/s00410-006-0095-2
Zhao, F., 2005. Alkali-metasomatism and uranium mineralization. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg, pp. 343–346. https://doi.org/10.1007/3-540-27946-6_91
     
CAPTCHA Image