زمین شناسی، کانی شناسی و ویژگی های سیال کانسنگ ساز سامانه رگه ای طلادار مسجد داغی، شمال غرب ایران

نوع مقاله : علمی- پژوهشی

نویسندگان

1 صنعتی شاهرود

2 شهید بهشتی

3 ساسکاتچوان

4 سازمان زمین شناسی و اکتشافات معدنی کشور

چکیده

ذخیره طلای مسجدداغی در 35 کیلومتری شرق جلفا و در زون ماگمایی البرز- آذربایجان قرار دارد. واحدهای سنگی شامل فلیش، تراکی آندزیت و آندزیت ائوسن و یک توده کوارتز مونزودیوریت پورفیری جوانتر است. کانی سازی به صورت رگه های کوارتز و کوارتز- باریت رخ‌داده است. پیریت کانی هیپوژن اصلی است و با مقادیری کالکوپیریت، اسفالریت و گالن همراهی می شود. رگه های طلا دار توسط زون های دگرسانی سیلیسی، آرژیلیک پیشرفته، آرژیلیک و پروپیلیتیک احاطه شده اند. داده های میان‌بارهای سیال کوارتز و اسفالریت مربوط به مرحله کانی سازی، به ترتیب نشانگر دمای همگن شدگی بین 123-298 و 112-218 درجه سانتی‌گراد و شوری بین 9/1- 8/12 و 9/1- 2/11 درصد وزنیNaCl است. مقادیر δ34S کانی های سولفیدی در دامنه 2/1+ تا 1/1- در هزار قرار دارد. تشکیل آلونیت و کائولینیت در دگرسانی آرژیلیک پیشرفته، کوارتز حفره دار در دگرسانی سیلیسی، همراهی باریت و انیدریت با رگه های کوارتزی و نبود کانی های کربناتی در مسجدداغی شواهدی از ذخیره اپی ترمال سولفید بالاست ؛ اگرچه کانی های سولفید بالای مس (انارژیت و لازونیت) حضور ندارند.

کلیدواژه‌ها


Abdollahi, M.R., Hosseini, M. and Eftekharnejad, J., 1996. Geological map of Julfa, scale 1:100000. Geological Survey of Iran. (in Persian with English abstract)
Adeli, Z., Rasa, I. and Darvishzadeh, A., 2013. Geochemistry and origin of Haftcheshmeh Cu- Porphyry deposit magma, east Azerbaijan, Iran. Scientific Quartery Journal of Geoscience, 23(90): 199-208. (in Persian with English abstract)
Akbarpour, A., Rasa, I., Mehrpartou, M. and Mohammadi, B., 2003. Gold mineralization in Masjeddahji area. Scientific Quartery Journal of Geoscience, 11(62): 2-10. (in Persian with English abstract)
Alavi, M., 1991. Tectonic map of the Middle East, scale 1: 5, 000, 000. Geological Survey of Iran.
Albinson, T., Norman, D.I., Cole, D. and Chomiak, B., 2001. Control on formation of low- sulfidation epithermal deposits in Mexico: Constrain from fluid inclusion and stable isotope data. In: T. Albinson and C.E. Nelson (Editors), New Mines and Discoveries in Mexico and Central America. Society of Economic Geologists, Special Publication 8, Littleton, pp. 1- 32.
Alirezaei. S., Ebrahimi. S. and Pan. Y., 2008. Fluid inclusion characteristics of epithermal precious metal deposits in the Arasbaran metallogenic zone, Northwestern Iran. 2nd Symposium of Asian Current Research on Fluid Inclusions (ACROFI-2), Indian Institue of Technology, Kharagpur, India.
Arribas, Jr. A., 1995. Characteristics of high- sulfidation epithermal deposits, and their relation to magmatic fluid. In: J.F.H. Thompson (Editor), Magmas. Fluids, and Ore Deposits. Mineralogical Association of Canada Short course, Canada , V. 23, pp. 419-454.
Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal field. Annual Review of Earth and Planetary Sciences, 6(2): 229- 250.
Cook, D.R. and Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Reviews in Economic Geology. Society of Economic Geologists, Special Publication 13, Littleton, pp. 221- 244.
Deen, J.A., 1990. Hydrothermal ore deposition related to high-level igneious activity: A stable isotope study of the Julcani mining district, Peru. Ph.D. Thesis, University of Colorado, Boulder, Colorado, USA, 120 pp.
Ebrahimi., S., Alirezaei, S. and Pan. Y., 2011. Geological setting, alteration, and fluid Inclusion characteristics of Zaglic and Safikhanloo epithermal Gold prospects, NW Iran. Geological Society of London, Special Publication, 350: 133-147.
Emamalipour, A., Abdoli Eslami, H. and Hajalilou, B., 2010. Geochemistry investigation of hydrothermal alteration related to gold epithermal mineralization in the Masjed Daghi area, west Julfa, northwest Iran. Journal of Economic Geology, 3(2): 199-213. (in Persian with English abstract)
Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundries. Economic Geology, 87(8): 1927-1944.
Hassanpour, Sh., Alirezaei, S., Selby, D. and Sergeev, S., 2015. SHRIMP zircon U-Pb and biotite and hornblende Ar-Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu-Mo systems: evidence for early Miocene porphyry – style mineralization in northwest Iran. International Journal of Earth Sciences, 104(1): 45-59.
Haghighi, E., Alirezaei, S. and Ashrafpour, E., 2013. Mineralization, alteration and ore fluid characteristic in Cheshmeh hafez base and precious metals deposit, Toroud- Chahshirin range, north central Iran. Schientific Quarterly Journal of Geosciences, 22(88): 99-110. (in Persian with English abstract)
Hedenquist, J.W., Arribas, A. and Gozales-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Reviews in Economic Geology. Society of Economic Geologists, Special Publication 13, Littleton, pp. 245- 277.
Heinrich, C.A., 2005. The physical and chemical evolution of low- salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita, 39(8): 864-869.
Hoefs, J., 2004. Stable isotope geochemistry. Springer –Verlog, Berlin,170 pp.
John, D.A., Garside, L.J. and Wallace, A.R., 1999. Magmatic and tectonic setting of late Cenozoic epithermal gold – silver deposits on northern Nevada, with an emphasis on the Pah Rah and Virginia ranges and the northern Nevada rift. In: J.A. Kisiz, (Editor), Low -sulfidation gold deposits in norther Nevada. V.29. Geological Society of Nevada, Special Publication, pp. 65-158.
Karimzadeh Somarin, A., 2004. Geochemical effects of endosakarn formation in the Mazraeh Cu-Fe skarn deposit in northwestern Iran. Geochemistry Exploration Environment Analysis, 4(2): 307-315.
Karimzadeh Somarin, A. and Hosseinzadeh, G., 2002. Mineralogy of the Anjerd skarn deposit, Ahar region, NW Iran. International Mineralogical Association, Edinburgh, Scotland, 271 pp.
Karimzadeh Somarin, A., Moayyed, M. and Hosseinzadeh, G., 2002. Ore mineralization in the Sonajil porphyry copper deposit, Herris region, NW Iran. International Mineralogical Association, Edinburgh, Scotland, 271 pp.
Li, Y.B. and Liu, J.M., 2006. Calculation of sulfur isotope fractionation in sulfides. Geochemica of Casmocemica Acta, 70(6): 1789-1795.
Mandeville, C.W., Webster, J., Tappen, Ch., Taylor, B., Timbal, A., Sasaki, A., Hauri, E. and Bacon, C.R, 2009. Stable isotope and petrologic evidence for open- system degassing during the climactic and pre-climatic eruptions of Mt. Mazama, Crater Lake, Oregon. Geochimica et Cosmochimica Acta, 73(8): 2978-3012.
Mehrpartou, M., 1993. Contribution to the geology, geochemistry, ore genesis and fluid inclusion investigations on Sungun Cu- Mo porphyry deposit (North- West of Iran). Unpublish Ph.D. Thesis, Hamburg University, Hamburg, Germany, 150 pp.
Mohammadi, B., Aliakbari, H., Fard., M. and Samaee, A., 2005. Geology and drilling report of Masjed Daghi area (scale 1:1000). Geological Survey of Iran, Tehran, Report 340, 130 pp. (in Persian)
Mohammadi, B., Bayaz, A. and Mehrpartou, M., 2000. Gold exploration in the Safikhanlou and Youseflou (Zaglic), SE Ahar. Geological Survey of Iran, Tehran, Report 231, 80 pp. (in Persian)
Mokhtari, A.A., Yarmohammadi, A., Abedian, N., Borna, B. and Eshghabadi, M., 2007. Polymetal exploration in the Gharechlar- Anigh area. Geological Survey of Iran, Tehran, Report 382, 181 pp. (in Persian)
Nabavi, M.H., 1976. An Introduction to Geology of Iran. Geological Survey of Iran, Tehan, 109 pp. (in Persian)
NICOCO, 2009. Geology and drilling report of the Masjed Daghi area. National Iranian Copper Company, Report 243, 115 pp. (in Persian)
Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16(2): 491-559.
Ohmoto, H. and Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: H.L. Barnes (Editor), Geochemistry of hydrothermal ore deposits. John Wiley and Sons, New York, pp. 509-567.
Pournik, P., 2006. Gold exploration in the Sharafabad area, NW Varzaghan. Geological Survey of Iran, Tehran, Report 320, 170 pp. (in Persian)
Roedder, E., 1984. Fluid inclusions: Reviews in mineralogy. V. 12. Mineralogical Society of America, Virginia, USA, 646 pp.
Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Economic Geology, 88(3): 733-753.
Seward, T.M., 1973. Thio complexes and the transport of gold in hydrothermal ore solutions. Geochemica et Cosmochimica Acta, 37(2): 370-399.
Seward, T.M. and Barnes, H.L., 1997. Metal transport by hydrothermal are fluid. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal ore deposits. John Wiley and Sons, New York, pp. 435-486.
Sheikh, S., Calagari, A.A. and Abedini, A., 2010. The mineralogy of alteration systems in Masjeddaghi, east of Jolfa, east Azerbaijan Province. Iranian Journal of Crystalography and Mineralogy, 17(4): 579-590 pp. (in Persian with English abstract)
Sillitoe, R.H., 1989. Gold deposits in the western pacific island arcs: The magmatic connection. Economic Geology, Monograph, 6(2): 274-291.
White, N.C. and Hedenquist, J.W., 1990. Epithermal environmens and styles of mineralization: variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(3): 445-474.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of roch-forming minerals. American Mineralogist, 95(2): 185-187.
Yaddollahi, R., Kananian, A., Maanijou, M., Sarjoghian, F. and Hassanpour, Sh., 2011. Adakiti magmatism in Masjeddaghi area, Julfa, East Azarbaijan. Iranian Journal of Crystallography and Mineralogy, 20(2): 297-320. (in Persian with English abstract)
Zanoozi, R., 2006. Mineralogy and genesis of the gold mineralization in the Masjed Daghi area. M.Sc. Thesis, Islamic Azad University, Science and Research Branch, Tehran, Iran, 134 pp. (in Persian with English abstract)
CAPTCHA Image