بررسی شرایط فیزیکو- شیمیایی تشکیل سولفیدها و سولفات ها بر اساس مطالعات پتروگرافی و ایزوتوپ های پایدار گوگرد- اکسیژن در کانسار مس پورفیری دره زار (کرمان)

نوع مقاله : علمی- پژوهشی

نویسندگان

1 اصفهان

2 معدن مس سرچشمه، کرمان، ایران

چکیده

کانسار مس پورفیری دره زار واقع بر روی کمربند ماگمایی ارومیه- دختر و در ده کیلومتری جنوب شرقی مس سرچشمه قرار دارد. این کانسار با دارا بودن پهنه های دگرسانی پتاسیک، کلریت- سریسیت، سریسیت، آرژیلیک و پروپلیتیک در نتیجه نفوذ استوک پورفیر (گرانودیوریت) دره زار به درون ولکانیک های ائوسن، تشکیل شده است. پیریت، کالکوپیریت و مولیبدنیت با بافتهای گوناگون افشان و رگه ای، کانیهای سولفیدی اولیه وکوولیت و کالکوسیت از سولفید های ثانویه این کانسار بهشمار می روند. داده های ایزوتوپ گوگرد به خاستگاه ماگمایی سولفات ها و سولفیدهای قلمرو مورد تحقیق اشاره دارد. ژیپس های این منطقه را میتوان، بر پایه مطالعات ایزوتوپی اکسیژن و گوگرد، به دو دسته 1- گرمابی و حاصل از آب‌گیری انیدریت و 2- سوپرژن و ناشی از اکسیداسیون پیریت تقسیم نمود. بر اساس نتایج حاصل از زوج سولفید- سولفات (پیریت- انیدریت)، حرارت سیال گرمابی در زمان تشکیل کانه معادل 489-515 درجه سانتی‌گراد تخمین زده می‌شود. منشأ ماگمایی با ماهیت احیاء برای این سیال کانه زا محتمل بوده و زونینگ ایزوتوپی بر پایه مقادیر δ34S پیریت نسبت به عمق، این منطقه را به دو بخش شرقی و غربی به ترتیب با همبستگی منفی و مثبت تقسیم‌بندی می نماید. همچنین در بخش شرقی بین عیار مس و ایزوتوپ 34 گوگرد یک تطابق منفی وجود دارد.

کلیدواژه‌ها


[1] Ayuso R. A., Barton M. D., Blakely R. J., Bodnar R. J., Dilles J. H., Gray F., Graybeal F. T., Mars J. C., "Porphyry Copper Deposit Model", Scientific Investigations Report 2010–5070–B (2010) 1-186.
[2] پارس اولنگ (شرکت مشاور زمین شناسی).، "زمین‌شناسی معدن مس دره‌زار" گزارش زمین‌شناسی معدن مس دره‌زار، (1386) 63 ص.
[3] معانی‌جو م.، "هاله‌های دگرسانی و رابطه آن با مینرالیزاسیون کانسار مس پورفیر دره‌زار و منطقه‌بندی ژئوشیمیایی آن (در ناحیه پاریز کرمان)"، پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی تهران، (1371) 150 ص.
[4] تقی‌زاده زانوقی ح.، "بررسی تکتونیک و کانه‌زایی در شمال شرق پاریز"، پایان‌نامه کارشناسی ارشد، (1375) 175 ص.
[5] عبدل‌زاده م.، "مطالعه ژئوشیمیایی کانه‌زایی و دگرسانی در کانسار مس دره‌زار (کرمان)"، پایان‌نامه کارشناسی ارشد، دانشگاه شیراز، (1384) 130 ص.
[6] هزارخانی ا.، " نحوه کانی‌سازی مس پورفیر دره‌زار"، گزارش داخلی شرکت ملی مس ایران، (1389) 500 ص.
[7] Derakhshani R., Abdolzadeh M., "Geochemistry, mineralization and alteration zones of Darreh-Zar porphyry copper deposit, Kerman, Iran", Journal of Applied Science 9 (2009) 1628-1646.
[8] Alizadeh Sevari B., Hezarkhani A., "Hydrothermal evolution of Darreh-zar porphyry copper deposit, Iran: evidence from fluid inclusions", Arabian Journal of Geosciences 7 (2012) 1463-1477.
[9] Sakai H., "Fractionation of sulphur isotopes in nature", Geochimica et Cosmochimica Acta 12 (1957) 69-150.
[10] Thode H. G., Monster J., Dunford H. B., "Sulfur isotope geochemistry", Geochimica et Cosmochimica Acta 25 (1961) 159-174.
[11] Rye R. O., "A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems", Chemical Geology 215) 2005( 5–36.
[12] Ohmoto H., Goldhaber M. B., "Sulfur and carbon isotopes", In: Barnes, H. L. (Ed.), Journal of Geochemistry of Hydrothermal Ore Deposits, (3rd ed.) Wiley, New York (1997) 517– 611.
[13] Farquhar G. D., Henry B. K., Styles J. M., "A rapid on-line technique for determination of oxygen isotope composition of nitrogen-containing organic matter and water", Journal of Rapid Commun Mass Spectrom 11 (1997) 1554–1560.
[14] Gustafson L. B., Hunt J. P., "The porphyry copper deposit at El Salvador, Chile", Economic Geology 70 (1975) 857−912.
[15] Sillitoe R. H., "porphyry copper systems", Economic Geology 105 (2010) 3-41.
[16] Parsapoor A., "Petrographic and petrological studies of Darreh-zar porphyry copper deposit and significance of host rocks on Cu - Mo mineralization", Ph.D thesis, University of Isfahan (2013) 375 p.
[17] Langton J. M., Williams S. A., "Structural, petrologi‌cal and mineralogical controls for the Dos Pobres orebody; Lone Star mining district, Graham County, Arizona, in Titley, S. R., ed., Advances in geology of porphyry copper deposits; southwestern North America", Tucson, University of Arizona Press 5 (1982) 335–352.
[18] Shinohara H., Iiyama J. T., Matso S., "Partition of chlorine compounds between silicate melt and hydrothermal solutions: I. partition of NaCl- KCl", Geochimica et Cosmochimica Acta 53 (1989) 2517– 2630.
[19] Candela P. A., "Magmatic ore-forming fluids: thermodynamic and mass transfer calculations of metal concentrations", Reviews in Economic Geology 4 (1989) 21-302.
[20] Robb L., "Introduction to Ore-Forming Processes", Blackwell Publishing, ( 2009) 386 p.
[21] Guilbert J. M., Park C. F., "The Geology of Ore Deposits", W. H. Freeman and Co (1986) 985 p.
[22] Lowenstern J. B.,"Carbon dioxide in magmas and implications for hydrothermal systems", Mineralium Deposita 36 (2001) 490-502.
[23] Hemley J. J., Hunt J. P., "Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geologic applications", Economic Geology 87 (1992) 23 –43.
[24] Al-Harahsheh M., Kingman S., Al-Harahsheh A., "Ferric chloride leaching of chalcopyrite: synergistic effect of CuCl2", Hydrometallurgy 91(2008) 89–97.
[25] Sillitoe R. H., McKee E. H.,"Age of supergene oxidation and enrichment in the Chilean porphyry copper province", Economic Geology 91 (1996)164–179.
[26] Dunn J. G., Muzenda C., "Thermal oxidation of covellite (CuS)", Thermochimica Acta 369 (2001) 117-123.
[27] Sillitoe R. H., "Supergene oxidized and enriched porphyry copper and related deposits", Economic Geology 100 (2005) 723−768.
[28] Chavez W. X. J., "Supergene oxidation of copper depos‌its—Zoning and distribution of copper oxide minerals", Society of Economic Geologists Newsletter 41(2000) 10–21.
[29] Hoefs J., "Stable Isotope Geochemistry", 5th edition Springer Verlag Heidelberg (2004) 244 p.
[30] Symonds R. B., Rose W. I., Bluth G. J. S., Gerlach T. M., "Volcanic-gas studies: methods, results, and applications” In: Carroll M. R., Holloway J. R. (Eds.), Volatiles in Magmas, Review Journal of Mineral 30 (1994) 1 – 66.
[31] Gerlach T. E., "Oxygen buffering of
Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt", Geochimal and Cosmochimical Acta 57 (1993) 795– 814.
[32] Holland H. D., "Some applications of thermochemical data to problems of ore deposits: II. Mineral assemblages and the compositions of ore-forming fluids", Economic Geology 60 (1965) 1101– 1166.
[33] Field C. W., Zhang L., Dilles J. H., Rye R. O., Reed M. H., "Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-Main Stage porphyry Cu–Mo and late, shallow Main Stage base-metal mineral deposits, Butte district, Montana", Chemical Geology 215 (2005) 61–93.
[34] Matthews S. J., Jones A. P., Beard A. D., "Buffering of melt oxygen fugacity by sulphur redox reactions in calc-alkaline magmas", Journal of the Geological Society 151 (1994) 815-823.
[35] Seedorff E., Dilles J. H., Proffett J. M., J., Einaudi M. T., Zurcher L., Stavast W. J. A., Johnson D. A., Barton M. D., "Porphyry deposits-Characteristics and origin of hypogene features", Economic Geology 100 (2005) 251–298.
[36] Ohmoto H., Rye R. O., "Isotopes of sulfur and carbon", In: Barnes H .L. (Eds.), Geochemistry of Hydrothermal Ore Deposits, Second Edition: John Wiley & Sons (1979) 509-567.
[37] Rye R. O., "The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective", Economic Geology 88 (1993) 733– 753.
[38] Ohmoto H., Lasaga A. C., "Kinetics of reactions between aqueous sulphates and sulphides in hydrothermal systems", Geochimical et Cosmochimical 46 (1982) 1727-1745.
[39] Pirajno F.,"Hydrothermal Processes and Mineral Systems". Geological survey west of Australia (2009) 1273 p.
[40] معانی جو م.، مستقیمی م.، عبدالهی ریسه م.، سپاهی گرو ع. ا.، "مطالعات سیستماتیک ایزوتوپهای پایدار گوگرد و سیالات درگیر گروههای رگه‌چه های مختلف کانسار مس پورفیری سرچشمه، بر اساس داد‌ه‌های جدید". مجله زمین‌شناسی اقتصادی، شماره 2 (1391) ص 217-239.
CAPTCHA Image