کانی‏‏ شناسی، زمین‌ شیمی‏‏‌، محیط زمین‌ ساختی و منشأ گرانودیوریت‏‏‌ های شرق بیدشک (پهنه ماگمایی ارومیه- دختر)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‏‌ شناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران

چکیده

گرانودیوریت- دیوریت شرق بیدشک با سن میوسن در شمال‏‏‌شرق اصفهان و در امتداد پهنه ماگمایی ارومیه دختر رخنمون دارند. بر اساس بررسی‌های کانی‏‏‌شناسی، پلاژیوکلاز، کوارتز، پتاسیم فلدسپار، هورنبلند و بیوتیت از کانی‏‏‌های اصلی، مگنتیت و آپاتیت از کانی‏‏‌های فرعی و کلسیت و کلریت از کانی‌های ثانویه سازنده این سنگ‏‏‌ها هستند. بافت غالب این سنگ‏‏‌ها گرانوفیری و پورفیری با زمینه دانه‌ریز است. حضور پلاژیوکلازهایی با زونینگ نوسانی، بافت غربالی و حاشیه غبارآلود ‏‌نشان‏‌دهنده نبود شرایط تعادل هنگام تبلور ماگمایی هستند. ترکیب آمفیبول‏‏‌ها در محدوده‏‏‌ آمفیبول‏‏‌های کلسیک قرار‌گرفته است و از نوع ترمولیت- اکتینولیت و مگنزیوهورنبلند هستند. فنوکریست پلاژیوکلاز ترکیب آندزین تا لابرادوریت دارد؛ اما پلاژیوکلازهای سدیک‏‌تر با ترکیب الیگوکلاز نیز در این سنگ‏‌ها دیده می‏‌شوند. با استفاده از فشارسنجی و دماسنجی هورنبلند، تشکیل این کانی در سنگ‏‏‌های نیمه‏‌نفوذی منطقه بین 01/3 تا 63/3 کیلوبار و دمای 685 تا 732 درجه سانتی‌گراد برای مگنزیوهورنبلند روی داده است. بررسی‏‏‌های زمین‌شیمیایی نشان می‏‏‌دهند که این توده گرانودیوریتی، متا‏‏‌آلومینوس، کالک‏‏‌آلکالن و از نوع I است و در محیط‏‏‌های فرورانش وکمان‏‏‌های آتشفشانی مرتبط با قاره تشکیل‌شده است. الگوی بهنجارشده عناصر کمیاب و خاکی کمیاب سنگ‏‌های‏‌ نفوذی این منطقه نسبت به ترکیب گوشته اولیه و کندریت، بیانگر غنی‌شدگی LREE نسبت به HREE است. نمودارهای زمین‌شیمیایی نیز نشان می‏‏‌دهند پیدایش ماگمای اولیه گرانودیوریت شرق بیدشک با منطقه فرورانش مرتبط بوده است. همچنین، تنوع در مقدار Rb نسبت به Nb در گرانیتوئیدهای شرق بیدشک می‏‏‌تواند ‏‌نشان‏‌دهنده غنی‏‌شدگی ماگمای اولیه سازنده این سنگ‏‌ها تحت‌تأثیر مذاب‏‌های حاصل از رویداد متاسوماتیسم گوه گوشته‏‏‌ای در اثر فرورانش نئوتتیس باشد.

کلیدواژه‌ها


Ahmadian, J., Hasckke, M., Mc Donald, I., Regelous, M., Ghorbani, M.R., Hashem Emami, M. and Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America, 121(5–6): 857–868. https://doi.org/10.1130/B26279.1
Almeida, M.E., Macambira, M.J. and Oliveira, E.C., 2007. Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97–1.96 Ga) in central portion of Guyana Shield. Precambrian Research, 155(1–2): 69–97. https://doi.org/10.1016/j.precamres.2007.01.004
Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3): 51–73. https://doi.org/10.1016/S0024-4937(99)00052-3
Aminoroayaei Yamini, M., Tutti, F., Aminoroayaei Yamini, M.R. and Ahmadian, J., 2016. Plagioclase as evidence of magmatic evolution in the Zafarqand porphyry copper deposit, NE Isfahan. Economic Geology, 10(1): 103–85. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i1.49039
Aminoroayaei Yamini, M., Tutti, F., Haschke, M., Ahmadian, J. and Murata, M., 2017. Synorogenic copper mineralization during the Alpine–Himalayan orogeny in the Zafarghand copper exploration district, Central Iran: petrogrography, geochemistry and alteration thermometry. Geological Journal, 52(2): 263–281. https://doi.org/10.1002/gj.2755
Anderson, J. L. and Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5–6): 549–559. https://doi.org/10.2138/am-1995-5-614
Arvin, M., Dargahi, S. and Babaei, A.A., 2004. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling. Journal of Asian Earth Sciences, 24(1): 105–113. https://doi.org/10.1016/j.jseaes.2003.09.004
Aydogan, M.S., Coban, H., Bozcu, M. and Akıncı, Ö., 2008. Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdağı Region (Banaz, Uşak), western Turkey: Implications for input of juvenile magmas in the source domains of western Anatolia Eocene–Miocene granites. Journal of Asian Earth Sciences, 33(3–4): 155–176. https://doi.org/10.1016/j.jseaes.2006.10.007
Blatt, H., Tracy, R. and Owens, B., 2006. Petrology igneous, sedimentary, and metamorphic. W.H. Freeman and Company, USA, 529 pp.
Castro, A., 2013. Tonalite –granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis. Earth-Science Reviews, 124: 68–95. https://doi.org/10.1016/j.earscirev.2013.05.006
Chappell, B.W. and White, A.J., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162: 70–87. https://doi.org/10.1016/j.lithos.2013.01.006
Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1–2): 68–84. https://doi.org/10.1016/j.lithos.2007.05.009
Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. George Allen and Unwin, London, 450 pp.
Deer, W.A., Howie, R.A. and J., Zussman, 1992, An Introduction to the Rock forming Minerals, Second Longman Editions, Longman, London, 696 pp.
DePaolo, D.J. and Daley, E.E., 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1–2): 157–185. https://doi.org/10.1016/S0009-2541(00)00261-8
Ewart, A., 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In: F. Barker (Editor), Developments in petrology. Elsevier, Amsterdam, pp. 13–121. https://doi.org/10.1016/B978-0-444-41765-7.50007-1
Fan, W.M., Guo, F., Wang, Y.J. and Lin, G., 2003. Late Mesozoic calc alkaline volcanism of extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121(1–2): 115–135. https://doi.org/10.1016/S0377-0273(02)00415-8
Fitton, J.‌G., James, D., Kempton, P.‌D., Ormerod, D.‌S. and Leeman, W.‌P., 1988. The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. Journal of Petrology, 24(1): 331–349. https://doi.org/10.1093/petrology/Special_Volume.1.331
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
Frost, B.R. and Frost, C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955–1969. https://doi.org/10.1093/petrology/egn054
Ghadirpour, M. Ahmadian, J. Sherafat, S. and Mackizadeh, M.A., 2018. Petrogenesis of Tarq-Mazdeh volcanic rocks based on clinopyroxene chemistry (South of Natanz, Urumieh Dokhtar volcanic belt). Journal of Economic Geology, 11(2): 305–320. (in Persian with English abstract) https://doi.org/10.22067/econg.v11i2.63479
Ghalamghash, J., Schmitt, A.K. and Chaharlang, R., 2019. Age and compositional evolution of Sahand volcano in the context of post-collisional magmatism in northwestern Iran: Evidence for time-transgressive magmatism away from the collisional suture. Lithos, 344: 265–279. https://doi.org/10.1016/j.lithos.2019.06.031
Ghorbani, M.R. and Bezenjani, R.N., 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc, 20(2): 188–202. https://doi.org/10.1111/j.1440-1738.2010.00757.x
Ghorbani, M.R., Graham, I.T. and Ghaderi, M., 2014. Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. International Geology Review, 56(8): 1039–1050. https://doi.org/10.1080/00206814.2014.919615
Giret, A., Bonin, B. and Leger, J.M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition. The Canadian Mineralogist, 18(4): 481–495. Retrieved March 02, 2019 from https://pubs.geoscienceworld.org/canmin/article-abstract/18/4/481/11440/Amphibole-compositional-trends-in-oversaturated
Green, N.L., 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos, 87(1–2): 23–49. https://doi.org/10.1016/j.lithos.2005.05.003
Hönig, S., Čopjaková, R., Škoda, R., Novák, M., Dolejš, D., Leichmann, J. and Galiová, M.V., 2014. Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. American Mineralogist, 99(10): 1922–1941. https://doi.org/10.2138/am-2014-4728
Irvine, T.N.J. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3–4): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
Jiang, C.‌Y. and An, S.‌Y., 1984. On chemical characteristics of Calcic amphiboles from igneous rocks and their petrogenesis significance. Acta Mineralogy Sinica, 33(1): 1–9. (in Chinese with English abstract) Retrieved February 12, 2016 from https://www.researchgate.net/post/Crustal_amphiboles_or_Mantle_amphiboles
Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M. and Blevin, P.L. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth and Planetary Science Letters, 284(3–4): 455–466. https://doi.org/10.1016/j.epsl.2009.05.011
Khalatbari Jafari, M., Akbari, M. and Ghalamghash, J. 2016. Geology, Petrology and Tectonomagmatic Evolution of the Eocene Volcanic Rocks in Aq Dag Area, NE Abhar. Kharazmi Journal of Earth Sciences, 2(1): 33–60.   https://doi.org/10.29252/gnf.2.1.33
Leake, B.E., Woolley A.R., Birch W.D., Burke E.A., Ferraris G., Grice J.D. and Stephenson N.C., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineralogical Magazine, 34(6): 209–215. https://doi.org/10.1180/0026461046810182
Machado, A., Lima, E.‌F., Chemale Jr, F., Morata, D., Oteíza, O., Almeida, D.P.M. and Urrutia, J.L., 2005. Geochemistry constraints of Mesozoic- Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica. Journal of South American Earth Sciences, 18(3–4): 407–425. https://doi.org/10.1016/j.jsames.2004.11.011
Middlemost, E.A., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1): 19–26. https://doi.org/10.1016/0009-2541(89)90011-9
Miyashiro, A., 1994. Metamorphic petrology. CRC Press, London, 399 pp.
Moinevaziri, H., 1996. A Discourse on Magmatism in Iran. Tarbiat Moallem University Press, Tehran, 440 pp. (in Persian)
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4
Moharami, F., Azadi, I., Mirmohamadi, M., Mehdipour Ghazi, J. and Rahgoshay, M., 2014. Petrological and Geodynamical Constraints of Chaldoran Basaltic Rocks, NW Iran: Evidence from Geochemical characteristics. Iranian Journal of Earth Sciences, 6(1): 31–43. Retrieved February 20, 2021 from http://ijes.mshdiau.ac.ir/article_522915.html
Nagudi, B., Koeberl, C. and Kurat, G., 2003. Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. Journal of African Earth Sciences, 36(1–2): 73–87. https://doi.org/10.1016/S0899-5362(03)00014-9
Offler, R., 1984. Subcalcic, Fe-rich amphiboles in meta-dolerites, Glenrock Station, NSW, Australia. Mineralogical Magazine, 48(346): 47–52. https://doi.org/10.1180/minmag.1984.048.346.07
Otten, M.‌T., 1984. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology, 86(2): 189-199. https://doi.org/10.1007/BF00381846
Pearce, J.‌A., Harris, N.‌B. and Tindle, A.‌G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Radfar, J., Alai Mahabadi, S. and Emami, E., 1999. Geology map Ardestan, scale 1: 100,000. Geological Survey of Iran (in Persian).
Raymond, L.‌A., 2002. The study of igneous sedimentary and metamorphic rocks. Petrology McGraw-Hill, Boston, 720 pp.
Reichew, M.K., Saundres, A.D., White, R.V. and Ukhamedov, A.I., 2005. Geochemistry and
Petrogenesis of Basalts from the west Sibrian Basin, an extension of the Permo-TriassicSibrian Traps, Russia. Lithos, 79(3–4): 425–452. https://doi.org/10.1016/j.lithos.2004.09.011
Rollinson, H., 1993. Using Geochemical Data: evaluation, presentation, interpretation, Longman Group UK Ltd., London, United Kingdom, 352 pp.
Sadeghian, M. and Ghaffary, M., 2011. The petrogenesis of Zafarghand granitoid pluton (SE of Ardestan). Iranian Journal of Petrology, 36(4): 47–70. Retrieved February 20, 2021 from https://ijp.ui.ac.ir/article_16071.html
Sarjoughian, F., Lentz, D., Kananian, A., Ao, S. and Xiao, W., 2018. Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International Journal of Earth Sciences, 107(3): 1127–1151. https://doi.org/10.1007/s00531-017-1548-8
Sarrionandia, F., Sánchez, M.‌C., Eguiluz, L., Ábalos, B., Rodríguez, J., Pin, C. and Ibarguchi, J.‌G., 2012. Cambrian rift-related magmatism in the Ossa-Morena Zone (Iberian Massif): Geochemical and geophysical evidence of Gondwana break‐up. Tectonophysics, 570(4): 135–150. https://doi.org/10.1016/j.tecto.2012.07.023
Schmidt, M.‌W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2–3): 304–310. https://doi.org/10.1007/BF00310745
Shelly, D., 1993. Igneous and metamorphic rocks under the microscope. Chapman and Hall, London, 445 pp.
Soesoo, A., 2000. Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia. Journal of the Geological Society, 157(1): 135–149. https://doi.org/10.1144/jgs.157.1.135
Stein, E. and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1–3): 185–207. https://doi.org/10.1007/s007100170033
Sun, S.‌S., 1982. Chemical composition and origin of the Earth’s primitive mantle. Geochimica Cosmochimica Acta, 46(1): 179–192. https://doi.org/10.1016/0016-7037(82)90245-9
Tankut, A., Dilek, Y. and Önen, P., 1998. Petrology and geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara melange, Turkey. Journal of Volcanology and Geothermal Research, 85(1-4): 265–284. https://doi.org/10.1016/S0377-0273(98)00059-6
Temel, A., Gondogdu, M.‌N. and Gourgaud, A., 1998. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85(1–4): 327–354. https://doi.org/10.1016/S0377-0273(98)00062-6
Verdel, C., Wernicke, B.‌P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3): 213–235. https://doi.org/10.1029/2010TC002809
Vyhnal, C.‌R., McSween, H.‌Y. and Speer, J.‌A., 1991. Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76(1–2): 176–188. Retrieved February 01, 1991 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/76/1-2/176/42488/Hornblende-chemistry-in-southern-Appalachian?redirectedFrom=fulltext
Whitney, D.L. and Evans, B.W., 2010. Abbreviation for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilson, M., 1989. Igneous petrogenesis. In: S. Mills and R. Mitchell (Editores), Mineralogical magazine. Cambridge University Press, London, pp. 466–515. https://doi.org/10.1180/minmag.1989.053.372.15
Wright, J.‌B. and McCurry, P., 1997. Geochemistry of calc-alkaline volcanic in northwestern Nigeria and a possible Pan-African suture zone. Earth and Planetary Science Letters, 37(5): 90–96. https://doi.org/10.1016/0012-821X(77)90149-2
Yeganehfar, H., Ghorbani, M.‌R., Shinjo, R. and Ghaderi, M., 2013. Magmatic and geodynamic evolution of Urumieh–Dokhtar basic volcanism, Central Iran: major, trace element, isotopic, and geochronologic implications. International Geology Review, 55(6): 767–786. https://doi.org/10.1080/00206814.2012.752554
Zhao, J.‌H. and Zhou, M.‌F., 2007. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. The Journal of Geology, 115(6): 675–689. https://doi.org/10.1086/521610