واکنش سیالات برگرفته از آب دریا با پریدوتیت‌های گوشته لیتوسفر اقیانوسی و تشکیل دایک‌ های هورنبلندیت و رگه های اسپادائیت و دولومیت در افیولیت نایین (استان اصفهان، ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

2 استاد، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

3 استادیار، گروه زمین‌‌شناسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مجموعه افیولیت مزوزوئیک نایین در شمال شهر نایین و در حاشیه غربی خرد قاره شرق- ایران مرکزی واقع‌شده است. درون پریدوتیت‌های گوشته این افیولیت، دایک­ های هورنبلندیتی سبزرنگ و دانه­ درشت به ضخامت چند­میلی‌متر تا حدود 50 سانتی ­متر دیده می‌شود که توسط رگه ­های سفید کربنات به ضخامت چند میلی­ متر تا چند سانتی‌متر قطع‌شده است،. دایک ­های هورنبلندیتی از اسپینل‌کروم‌دار، هورنبلند، کلریت، ایلمنیت، ترمولیت، کلسیت و دولومیت و رگه ­های کربنات از کلسیت، دولومیت و اسپادائیت (MgSiO2(OH)2·H2O) تشکیل شده ­اند. اسپادائیت ­ها از نوع گرمابی بوده و در یک محیط بازیک به عنوان آخرین فاز کانیایی تشکیل شده ­اند. نتایج تجزیه­ شیمی کانی ­های موجود در هورنبلندیت ­ها نشان می ­دهد که هورنبلندها از نوع هورنبلندهای منیزیم ­دار (93/0= Mg#)، کلریت‌ها از نوع پنینیت و کلینوکلر (94/0= Mg#) بوده و مقدار متوسط Mg# و Cr# در ­اسپینل‌های­کروم‌دار به ترتیب 45/0 و 66/0 است. حضور کانی­ های آب­دار فراوان (هورنبلند و کلریت) و رگه ­های کربنات، همچنین شیمی هورنبلند­ها و اسپینل‌های­ کروم‌دار، نشان‌دهنده منشأ غیر­ماگمایی دایک‌ها و رگه‌ها و تشکیل آنها در اثر تأثیر سیالات برگرفته از آب دریا بر پریدوتیت‌های بخش بالایی گوشته است. ویژگی­های شیمیایی و کانی­ شناسی این هورنبلندیت ­ها نشان‌دهنده تحرک عناصر Mg، Ca، Si، Al، Na، Cr، Fe و Ti توسط سیالات برگرفته از آب دریا در محیط پریدوتیت‌های گوشته بالایی است. این پژوهش نشان می ­دهد که سیالات برگرفته از آب دریا بعد از واکنش و عبور از تمام واحدهای سنگی پوسته اقیانوسی با پریدوتیت‌های بخش بالایی گوشته نیز وارد واکنش شده و علاوه ­بر ایجاد دایک ­های هورنبلندیتی، رگه ­های کربنات حاوی کلسیت، دولومیت و اسپادائیت را نیز به وجود آورده است.

کلیدواژه‌ها


Akizawa, N. and Arai, S., 2014. Petrology of mantle diopsidite from Wadi Fizh, northern Oman ophiolite: Cr and REE mobility by hydrothermal solution. Island Arc, 23(4): 312–323.  https://doi.org/10.1111/iar.12074
Akizawa, N., Arai, S., Tamura, A., Uesugi, J. and Python, M., 2011. Crustal diopsidites from the northern Oman ophiolite: Evidence for hydrothermal circulation through suboceanic Moho. Journal of Mineralogical and Petrological Sciences, 106(5): 261–266.  https://doi.org/10.2465/jmps.110621b  
Arai, S., Miura, M., Tamura, A., Akizawa, N. and Ishikawa A., 2020. Hydrothermal Chromitites from the Oman Ophiolite: The Role of Water in Chromitite Genesis. Minerals, 10(3): 217. https://doi.org/10.3390/min10030217
Bach, W., Jöns, N. and Klein, F., 2013. Metasomatism within the ocean crust. In: D.E. Harlov and H. Austrheim (Editors), Metasomatism and the chemical transformation of rock. Springer Verlag, Berlin, pp. 253-288. http://doi.org/10.1007/978-3-642-28394-9_8
Berger, J., Femenias, O. and Mercier, J.C.C., 2005. Ocean floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker. Journal of Metamorphic Geology, 23(9): 795–812.  https://doi.org/10.1111/j.1525-1314.2005.00610.x
Birsoy, R. 2002. Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay Minerals, 50(6): 736 –745.  https://doi.org/10.1346/000986002762090263 
Bonatti, E., Seyler, M., Channell, J., Girardeau, J.  and Mascle, G., 1990.  Peridotites drilled from the Tyrrhenian Sea. Proceedings of the Ocean Drilling Program, 107: 37–47.  https://doi.org/10.2973/odp.proc.sr.107.141.1990
Braga, R. and Sapienza, G.T., 2007. The retrograde evolution of a dolomite-bearing hydrous peridotite from the Ulten Zone (Italian Alps). GeoActa, 6: 37–45. Retrieved October 31, 2024 from https://www.researchgate.net/publication/289605118_The_retrograde_evolution_of_a_dolomite-bearing_hydrous_peridotite_from_the_Ulten_Zone_Italian_Alps
Cushman, J. A. and Ponton G.‌M., 1932. The Foraminifera of the Upper, Middle, and part of the Lower Miocene of Florida. Florida State Geological Survey, Bulletin 9, 1–147. https://ufdc.ufl.edu/UF00000444/00001/images
Davoudzadeh, M., 1972. Geology and petrography of the area north of Naein, Central Iran. Geological Survey of Iran, Report 14, 89 pp.
Förster, B., Braga, R., Aulbach, S., Lo Pò, D., Bargossi, G.M. and Mair, V., 2017. A petrographic study of carbonate phases in the Ulten Zone ultramafic rocks: insights into carbonation in the mantle wedge and exhumation-related decarbonation. Ofioliti, 42(2): 105–127. https://doi.org/10.4454/ofioliti.v42i2.487
Hassanipak, A.A. and Ghazi, A., 2000. Petrochemistry, 40Ar-39Ar ages and tectonics of the Naein ophiolite, Central Iran. Geological Society of America Annual Meeting, Reno. Nevada, 237‌–238. Retrieved November 12, 2024 from https://cir.nii.ac.jp/crid/1570572700877026176
Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine and Journal of the Mineralogical Society, 30(224): 277–292. https://doi.org/10.1180/minmag.1954.030.224.01
Honnorez, J., 1967. La Palagonitisation. Un aspect du volcanisme sous-marin: l’altération du verre basique de Palagonia (Sicile). Thèse Université Libre de Bruxelles, Bruxelles, Belgique, 320 pp.
Leake, B.E., Woolly, A.R., Arps, C.E.S., Birch, W., Gilbert, M.Ch., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, EH., Schumacher, J.C., Smith, D.C., Stephenson, N., Whittaker, E.J.W. and Youzhi, G., 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623
Maffione, M., Morris, A., Plumper, O. and Van Hinsbergen, D.J.J., 2014. Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. Advancing Earth and space sciences. 15(4): 923–944.   https://doi.org/10.1002/2013GC004993
McCollom, T.M. and Shock E.L., 1998. Fluid–rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. Journal of Geophysical Research Solid Eearth, 103‌(B1): 547–575.  https://doi.org/10.1029/97JB02603
Moghadam, H.S., Fernando, C. and Stern, R.J., 2013. U-Pb zircon ages of Late Cretaceous Nain–Dehshir ophiolites, Central Iran. Journal of Geological Society, 170(1): 175–184. https://doi.org/10.1144/jgs2012-066
Moghadam, H.S., Whitechurch, H. and Rahgoshay M., 2009. Significance of Nain-Baft ophiolitic belt (Iran): shortlived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience, 341(12): 1016–1028.  https://doi.org/10.1016/j.crte.2009.06.011
Nosouhian, N., Torabi, G., Morishita, T. and Arai, S. 2022. Polymineralic hydrothermal veins in the Paleozoic Jandaq ophiolite gabbros (Central Iran); Evidence for ingression of high temperature seawater-derived fluids in to the gabbroic section of the Paleo-Tethys oceanic crust. Periodico di Mineralogia, 91(2): 113–142. https://doi.org/10.13133/2239-1002/17725
Okamoto, A. and Oyanagi, R., 2023. Si- versus Mg-metasomatism at the crust–mantle interface: Insights from experiments, natural observations and geochemical modeling. Progress in Earth and Planetary Science, 10(1): 39.  https://doi.org/10.1186/s40645-023-00568-w
Pirnia, T., Arai, S., Tamura, A., Ishimaru, S. and Torabi, G. 2014. Sr enrichment in mantle pyroxenes as a result of plagioclase alteration in lherzolite. Lithos, 196–197: 198–212.  https://doi.org/10.1016/j.lithos.2014.03.008
Pirnia, T., Arai, S. and Torabi, G., 2010. Post deformational impregnation of depleted MORB in Nain lherzolite (Central Iran). Journal of Mineralogical and Petrological Sciences, 105(2): 74–79.
Pirnia, T., Arai, S. and Torabi, G., 2013. A better picture of the mantle of the Nain ophiolite inferred from detrital chromian spinels. The Journal of Geology, 121‌(6): 645–661. https://doi.org/10.1086/673175
Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.A. and Arai, S., 2007. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters, 255(3–4): 289–305. https://doi.org/10.1016/j.epsl.2006.12.030
Sapienza, G.T., Scambelluri, M. and Braga, R., 2009. Dolomite bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contributions to Mineralogy and Petrology, 158‌(3): 401–420. https://doi.org/10.1007/s00410-009-0389-2
Schaller, W.T. and Nolan, T.‌B., 1931. An occurrence of Spadaite at Gold Hill, Utah. American Mineralogist 16‌(6): 231–236. Retrieved October 17, 2024 http://www.minsocam.org/ammin/AM16/AM16_231
Shirdashtzadeh, N., Dilek, Y., Furnes, H. and Dantas, E.L., 2024. Early Jurassic and Late Cretaceous Plagiogranites in Nain-Baft Ophiolitic Mélange Zone in Iran: Remnants of Rift–Drift and SSZ Evolution of a Neotethyan Seaway. Journal of the Geological Society, 181(2).  https://doi.org/10.1144/jgs2023-181 
Shirdashtzadeh, N., Torabi, G., Arai, S., 2010. Metamorphism and metasomatism in the Jurassic of Nain ophiolitic mélange, Central Iran.  Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 255(3): 255–275.   https://doi.org/10.1127/0077-7749/2009/0017
Shirdashtzadeh, N., Torabi, G. and Arai, S., 2011. Two Mesozoic oceanic phases recorded in the basic and metabasic rocks of the Nain and Ashin-Zavar ophiolitic mélanges (Isfahan Province, Central Iran). Ofioliti, 36(2): 191–205. https://doi.org/10.4454/OFIOLITI.V36.I2.5
Torabi, G., 2008. Vein hydrothermal metamorphism of Jandaq ophiolitic gabbros (NE of Isfahan Province). University of Isfahan Research Journal, 30‌(1): 83-100. (in Persian with English abstract) Retrieved November 10, 2024 from https://www.sid.ir/paper/56015/en
Torabi, G., 2012. Central Iran Ophiolites: Naein, Ashin and Surk (Mesozoic), Anarak, Jandaq, Bayazeh and Posht-e-Badam (Paleozoic). Jahad Daneshgahi of the University of Isfahan, Isfahan, 443 pp.
Torabi, G., 2013. Chromitite absence, presence and chemical variation in ophiolites of Central Iran (Naein, Ashin, Anarak and Jandaq). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 267(2): 171–192.  https://doi.org/10.1127/0077-7749/2013/0303
Torabi, G., Arai, S., Morishita, T. and Tamura, A., 2017. Mantle hornblendites of Naein ophiolite (Central Iran): Evidence of deep high temperature hydrothermal metasomatism in an upper mantle section. Petrology, 25(1): 114–137.  https://doi.org/10.1134/S0869591117010076
Tumiati, S., Fumagalli, P., Tiraboschi, C. and Poli, S., 2013. An experimental study on COH-bearing peridotite up to 3.2 GPa and implications for crust-mantle recycling. Journal of Petrology, 54‌(3): 453–479.  https://doi.org/10.1093/petrology/egs074
Von Kobell, F., 1843. Ueber den Spadait, eine neue Mineral-species, und über den Wollastonit von Capo di bove. Gelehrte Anzeigen der Königlich Bayerischen Akademie der Wissenschaften, 17: 945–950. Retrieved November 10, 2024 https://rruff.info/uploads/Von%20Kobell%20(1843)%20readable%20German%20(1).pdf
Warr, L.N., 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85: 291–320. https://doi.org/10.1180/mgm.2021.43
Winchell, A.N., 1927. Elements of optical mineralogy: An introduction to microscopic petrography- Descriptions of minerals. John Wiley and Sons, New York, 570 pp.
CAPTCHA Image