زمین‌ شناسی، زمین‌ شیمی، میان‌ بارهای سیال و منشأ کانه‌ زایی مگنتیت- آپاتیت عربشاه، جنوب‌ خاور تکاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه زمین‌شناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 کارشناسی ارشد، آزمایشگاه کانی‌شناسی، مرکز تحقیقات فرآوری مواد معدنی ایران، تهران، ایران

چکیده

کانه‌زایی آهن عربشاه تنها کانه‌زایی شناخته‌شده از نوع مگنتیت- آپاتیت در زیرپهنه تکاب- تخت‌سلیمان- انگوران، در جنوب‌خاور شهر تکاب است. قدیمی‌ترین واحد سنگی در منطقه کانه‌زایی عبارت است از توالی رسوبی معادل سازند قم که گنبد داسیتی ایوب انصار به سن پلیوسن به داخل آن نفوذ‌کرده است. کانه‌زایی مگنتیت- آپاتیت عربشاه به‌ صورت رگه- رگچه‌ای با راستای خاوری- باختری در داخل گنبد داسیتی رخنمون دارد. پهنه بِرشی حاوی رگه- رگچه‌های باریک مگنتیتی در کمرپایین و کمربالای رگه اصلی مشاهده می‌شود. دگرسانی‌های موجود شامل انواع سدیک- کلسیک، سیلیسی و آرژیلیک است. مگنتیت تنها کانه موجود در کانه‌زایی است که با کانی‌های باطله آپاتیت، کلینوپیروکسن، آلبیت و کوارتز همراهی می‌شود. ساخت و بافت‌های موجود شامل رگه- رگچه‌ای، بِرشی، دانه‌پراکنده و جانشینی هستند. محتوای مجموع عناصر کمیاب خاکی در بلورهای آپاتیت بیش از یک درصد بوده و یک الگوی پرشیب غنی از عناصر کمیاب خاکی سبک با نسبت بالای LREE/HREE به همراه آنومالی منفی Eu را نشان می‌دهند که از ویژگی‌های کانسارهای آهن نوع کایروناست. داده‌های به دست آمده از بررسی میان‌بارهای سیال بیانگر حضور میان‌بارهای دوفازی و چندفازی نوع LV، VL، LVS، LVH و LVHS با دمای همگن‌شدن بین 230 تا 550 درجه سانتی‌گراد است. شوری میان‌بارهای چندفازی حاوی هالیت بین 35 تا 60 درصد وزنی معادل نمک طعام متغیر است. داده‌های میان‌بارهای سیال بیانگر سیال ماگمایی برای تشکیل کانه‌زایی مگنتیت- آپاتیت عربشاه هستند. شواهدی نظیر مجموعه کانی‌شناسی، دگرسانی سنگ دیواره، ساخت و بافت ماده معدنی، زمین‌شیمی و داده‌های میان‌بارهای سیال نشان می‌دهد که کانه‌زایی مگنتیت- آپاتیت عربشاه در دسته کانسارهای آهن نوع کایرونا قرار می‌گیرد. 

کلیدواژه‌ها


Asadi, S. and Khorshidian, F., 2013. Fluid inclusion microtrmometry and geochemistry of the Chadormalou deposit, evidences from IOCG mineralization in Bafq mining district. 17th Symposium of Geological Society of Iran, Shahid Beheshti University, Tehran, Iran. (in Persian with English abstract)
Asadi, S., Manouchehry Nya, M. and Hassannezhad, A.A., 2019. Origin of Choghart iron ore deposit, Central Iran: Application of the geochemistry of fluid inclusion. Journal of Advanced Applied Geology, 17(3): 59–71. (in Persian with English abstract) http://dx.doi.org/10.22055/aag.2019.28137.1918
Asadi, H.H., Voncken, J.H.L., Kühnel, R.A. and Hale, M., 1999. Invisible gold at Zarshuran, Iran. Economic Geology, 94(8): 1367–1374. https://doi.org/10.2113/gsecongeo.94.8.1367
Belousova, E., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.L., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, C.R. and Moore, F., 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralium Deposita, 42: 799–820. https://doi.org/10.1007/s00126-007-0144-4
Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S. and Ghazban, F., 2011. Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 281(3–4): 253–269. https://doi.org/10.1016/j.chemgeo.2010.12.013
Boomeri, M., 2013. Rare earth minerals in Esfordi magnetite-apatite deposit, Bafq district. Scientific Quarterly Journal, Geosciences 22(85): 71–82. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2012.54023
Buchanan, L.J., De Vivo, B., Kramer, A.K. and Lima, A., 1981. Fluid inclusion study of the Fiumarella barite deposit (Catanzaro, south Italy). Mineralium Deposita, 16: 215–226. https://doi.org/10.1007/BF00202736
Daliran, F., 2008. The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, NW Iran, hydrothermal alteration and mineralization. Mineralium Deposita, 43: 383–404. https://doi.org/10.1007/s00126-007-0167-x
Daliran, F., Hofstra, A.H., Walther, J. and Stüben, D., 2003. Aghdarreh and Zarshuran SRHDG deposits, Takab region, NW Iran. GSA Annual Meeting, Abstract with Programs, Session 63–8. Retrieved November 2 –5, 2003 from  https://www.agw.kit.edu/english/1427_1506.php
Daliran, F., Pride, K., Walther, W., Berner, Z.A. and Bakker, R.J., 2013. The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide–zinc carbonate mineralization. Ore Geology Reviews, 53: 373–402. https://doi.org/10.1016/j.oregeorev.2013.02.002
Dill, H.G., 2010. The chessboard classification schome of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews 100(1–4): 1–420. https://doi.org/10.1016/j.earscirev.2009.10.011
Fonoudi, M. and Hariri, A., 2000. Geological map of Takab, scale 1:100000. Geological Survey of Iran.
Forster, H. and Jafarzadeh, A., 1994. The Bafq mining district in central Iran: a high mineralized infra-Cambrian volcanic field. Economic Geology, 89(8): 1697–1721. https://doi.org/10.2113/gsecongeo.89.8.1697
Frietsch, R. and Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews 9(6): 489–510. https://doi.org/10.1016/0169-1368(94)00015-G
Gilg, H.A., Boni, M., Balassone, G., Allen, C.R., Banks, D. and Moore, F., 2006. Marble-hosted sulphide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita 41: 1–16. https://doi.org/10.1007/s00126-005-0035-5
Gleason, J.D., Marikos, M.A., Barton, M.D. and Johnson, D.A., 2000. Neodymium isotope study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) system. Geochemical et Cosmochemica Acta 64(6): 1059–1068.  https://doi.org/10.1016/S0016-7037(99)00325-7
Harlov, D., Meighan, C.G., Kerr, I.D. and Samson, I.M., 2016. Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe-oxide-REE deposit, southeast Missouri, USA. Economic Geology, 11(8): 1963. http://dx.doi.org/10.2113/econgeo.111.8.1963
Heidari, S.M., Daliran, F., Paquette, J.L. and Gasquet, D., 2015. Geology, timing, and genesis of the high sulfidation Au (–Cu) deposit of Touzlar, NW Iran. Ore Geology Reviews, 65: 460–486. https://doi.org/10.1016/j.oregeorev.2014.05.013
Heidari, S.M., Ghaderi, M., Kouhestani, H., 2017. Sediment-hosted epithermal gold mineralization at Arabshah, SE Takab, NW Iran. Scientific Quarterly Journal, Geosciences 27(105): 233–244. (in Persian with English abstract) http://doi.org/10.22071/gsj.2017.53971
Heidarian, H., Alirezaie, S. and Lenta, D.R., 2017. Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews, 83: 43–62. https://doi.org/10.1016/j.oregeorev.2016.11.031
Hildebrand, R.S., 1986. Kiruna- type deposit: their origin and relationship to inter mediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology 81(3): 640–659. https://doi.org/10.2113/gsecongeo.81.3.640
Hitzman, M.W., 2000. Iron oxide-Cu-Au deposits: What, where, when and why? In: Porter, T.M., (Editor), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, 1. Australian Mineral Foundation, Adelaide, pp. 9–25. Retrieved December 3-5, 2000 from https://books.google.com/books/about/Hydrothermal_Iron_Oxide_Copper_gold_Rela.html?id=NXPxAAAAMAAJ
Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Protrozoic iron oxide (Cu-U-Au-LREE) deposits. Precambrian Research, 58(1): 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
Jami, M., Dunlop, A.C. and Cohen, D.R., 2007. Fluid inclusion and stable isotope study of the Esfordi apatite- magnetite deposit, Central Iran. Economy Geology, 102(6): 1111–1128.  https://doi.org/10.2113/gsecongeo.102.6.1111
 Karami, F., Kouhestani, H., Mokhtari, M.A.A. and Azimzadeh, A.M., 2021. The Halab deposit, SW Zanjan: Volcanogenic massive sulfide Zn–Pb (Ag) mineralization, Takab–Takht-e-Soleyman–Angouran metallogenic district. Journal of Economic Geology, 13(1): 165–192. (in Persian with English abstract) https://dx.doi.org/10.22067/econg.v13i1.76448
Kordian, Sh., Mokhtari, M.A.A., Kouhestani, H. and Veiseh, S., 2020. Geology, mineralogy, structure and texture, geochemistry and genesis of the Golestan Abad iron oxide- apatite deposit (East of Zanjan). Journal of Economic Geology, 12(3): 299–325. (in Persian with English abstract) https://doi.org/10.22067/econg.v12i3.79628
Lecumberri-Sanchez, P., Steele-Macinnis, M. and Bodnar, R.J., 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92: 14–22. https://doi.org/10.1016/j.gca.2012.05.044
Loberg, B.E.H. and Horndal, A.K., 1983. Ferride geochemistry of Swidish Precambrian iron ores. Mineralium Deposita, 18(3): 487–504. Retrieved June 15, 2021 from https://link.springer.com/article/10.1007/BF00204493
Lotfi, M. and Karimi, M., 2004. Mineralogy and ore genesis of Bayche Bagh five elements (Ag-Ni-Co-As-Bi) vein deposit (NW Zanjan, Iran). Scientific Quarterly Journal, Geosciences, 12(53): 40–55. (in Persian with English abstract)
Maanijou, M. and Khodaie, L., 2018. Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (East Takab). Journal of Economic Geology, 10(1): 267–293. (in Persian with extended English abstract) https://doi.org/10.22067/econg.v10i1.56522
Majidi, S.A., Lotfi, M., Emami, M.H. and Nezafati, N., 2017- The genesis of iron oxide-apatite (IOA) deposits: evidence from the geochemistry of apatite in Bafq-Saghand district, Central Iran. Scientific Quarterly Journal, Geosciences, 27(105): 233–244. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2017.54185
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2015. Mineralization and fluid inclusion studies of the Khanlogh iron oxide- apatite deposit, noetheast Iran. Advanced Applied Geology, 17(3): 59-71. (in Persian with English abstract) http://dx.doi.org/10.22055/aag.2015.11825
McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Mehrabi, B., Yardley, B.W.D. and Cam, J.R., 1999. Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineralium Deposita, 34: 673–696. https://doi.org/10.1007/s001260050227
Mohammadi, Z., Ebrahimi, M. and Kouhestani, H., 2014. The Goorgoor Fe occurrence, NE of Takab: A metamorphosed volcano-sedimentary mineralization in the Sanandaj–Sirjan zone. Advanced Applied Geology, 4(13): 20–32. (in Persian with English abstract). Retrieved June 15, 2021 from  https://aag.scu.ac.ir/article_10913.html
Mohammadi Niaei, R., Daliran, F., Nezafati, N., Ghorbani, M., Sheikh Zakariaei, J. and Kouhestani, H., 2015. The Ay Qalasi deposit: An epithermal Pb–Zn (Ag) mineralization in the Urumieh-Dokhtar Volcanic Belt of northwestern Iran. Neues Jahrbuch für Mineralogie – Abhandlungen (Journal of Mineralogy and Geochemistry), 192(3): 263–274.  https://doi.org/10.1127/njma/2015/0284
Mokhtari, M.A.A., 2015. Posht-e-Badam metallogenic block (Central Iran): a suitable zone for REE mineralization. Central European Geology, 58(3): 199–216. https://doi.org/10.1556/24.58.2015.3.1
Mokhtari, M.A.A., Hossein Zadeh, Gh. and Emami, M.H., 2013. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Science, 122(3): 795–807.  https://doi.org/10.1007/s12040-013-0313-z
Mokhtari, M.A.A., Sadeghi, M. and Nabatian, Gh., 2018. Geochemistry and potential resource of rare earth element in the IOA deposits of Tarom area, NW Iran. Ore Geology Reveiws, 92: 529–541. https://doi.org/10.1016/j.oregeorev.2017.12.006
Nabatian, Gh., 2012. Geology, Geochemistry and Evolution of Iron Oxide-apatite Deposits in the Tarom Volcano-plutonic Belt, Western Alborz. Unpublished PhD Thesis, Tarbiat Modares University, Tehran, Iran, 375 pp. (in Persian with English abstract) Retrieved September 18, 2012 from https://parseh.modares.ac.ir/thesis.php?id=2032388&sid=1&slc_lang=en
Nabatian, Gh. and Ghaderi, M., 2014. Mineralogy and geochemistry of the rare earth elements in iron oxide-apatite deposits of the Zanjan region. Scientific Quarterly Journal, Geosciences, 24(93): 157–170. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2014.43556
Nabatian, Gh., Ghaderi, M., Corfu, F., Neubauer, F., Bernroider, M., Prokofiev, V. and Honarmand, M., 2014. Geology, alteration, age and origin of iron oxide–apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran. Mineralium Deposita, 49(2): 217–234. https://doi.org/10.1007/s00126-013-0484-1
Nabatian, Gh., Ghaderi, M., Daliran, F. and Rashidnejad Omran, N., 2012. Sorkhe-Dizaj iron oxide-patite ore deposit in the Cenozoic Alborz-Azarbaijan magmatic belt, NW Iran. Resource Geology, 63(1): 42–56. https://doi.org/10.1111/j.1751-3928.2012.00209.x
Najafzadeh, M., Ebrahimi, M., Mokhtari, M.A.A. and Kouhestani, H., 2017. The Arabshah occurrence: An epithermal Au-As-Sb Carlin type mineralization in the Takab-Angouran-Takht-e-Soleyman metallogenic zone, western Azerbaijan. Advanced Applied Geology, 6(4): 62–77. (in Persian with English abstract) http://doi.org/10.22055/aag.2016.12709
Nouri, F., Mokhtari, M.A.A., Izadyar, J. and Kouhestani, H., 2021. Geochemistry and petrogenesis of the Alamkandi granitoid body and Fe skarn (west of Mahneshan, Zanjan province). Journal of Economic Geology, 13(3): 507–536. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V13I3.86285
Pourmohamad, F., Kouhestani, H., Azimzadeh, A.M., Nabatian, Gh. and Mokhtari, M.A.A., 2019. Mianaj iron occurrence, southwest of Zanjan: Metamorphosed and deformed volcano-sedimentary type of mineralization in Sanandaj–Sirjan zone. Scientific Quarterly Journal, Geosciences, 28(111): 161–174. (in Persian with English abstract) http://doi.org/10.22071/gsj.2017.84283.1099
Roedder, E., 1984. Fluid inclusions. Mienralogical Society of America, Virginia, 646 pp.
Sabzi, Z., Mokhtari, M.A.A. and Ebrahimi, M., 2018. Petrology and geochemistry of Ayoub Ansar volcanic dome, southeast Takab. Researches in Earth Sciences, 9(1): 103–117. (in Persian with English abstract) Retrieved June 15, 2021 from https://esrj.sbu.ac.ir/article_96554.html?lang=en
Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie, Glasgow, 239 pp. http://doi.org/10.1180/minmag.1986.050.356.32
Steele-MacInnis, M., Lecumberri-Sanchez, P. and Bodnar, R.J., 2012. HOKIEFLINCS-H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers and Geosciences, 49: 334–337. https://doi.org/10.1016/j.cageo.2012.01.022
Sterner, S.M., Hall, D.L. and Bodnar, R.J., 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta 52, 989–1005. https://doi.org/10.1016/0016-7037(88)90254-2
Tofigi, F., Mokhtari, M.A.A., Izadyar, J. and Kouhestani, H., 2019. Geology and genesis of Halab 2 Fe occurrence in Takab-Takht-e-Soleiman-Anguoran metallogenic zone. Advanced Applied Geology, 8(1): 44–59. (in Persian with English abstract) http://doi.org/10.22055/aag.2018.22926.1747
Torab, F.M. and Lehmann, B., 2008. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347–363. https://doi.org/10.1180/minmag.2007.071.3.347
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1):185–187. https://doi.org/10.2138/am.2010.3371  
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
 
CAPTCHA Image