تعیین شرایط فشار- دما و تحول سیال گرمابی- ماگمایی در کانسار مس- مولیبدن سنج، البرز مرکزی: شواهد میان‌ بارهای سیال

نوع مقاله : علمی- پژوهشی

نویسندگان

1 بوعلی سینا

2 خوارزمی

3 لرستان

چکیده

کانی‌سازی مس- مولیبدن سنج با ژئومتری استوک‌ورک و انتشاری در محل همبری توده‌ نفوذی سنج و سنگ‌ میزبان‌ توف ‌تا آندزیت ‌پورفیری تشکیل شده است. کانه‌زایی کوارتز- سولفیدی استوک‌ورک همراه دگرسانی پتاسیک- فیلیک شامل رگه‌های کوارتز- بیوتیت-کالکوپیریت (QBC)، کوارتز- مولیبدنیت (QM) و کوارتز- پیریت (QP) است. طبق شواهد، میان‌بارهای اشباع از نمک اولیه در رگه‌های QBC با دمای بالا (C°450

کلیدواژه‌ها


Allan, M.M., Morrison, G.W. and Yardley, B.W.D., 2011. Physicochemical Evolution of a Porphyry-Breccia System: A Laser Ablation ICP-MS Study of Fluid Inclusions in the Mount Leyshon Au Deposit, Queensland, Australia. Economic Geology, 106(3): 413–436.
Amini, B., 1993. Geological map of Tehran scale 1:100,000. Geological survey of Iran.
Aude´tat, A., Gunther, D. and Heinrich, C.A., 2000. Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA–ICP–MS evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563–1581.
Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chemical Geology, 194(1-3): 3–23.
Bakker, R.J., Baumgartner, M. and Doppler, G., 2012. Diffusion of water through quartz: a fluid inclusion study. Goldschmidt conference, Montreal Convection Center, Montreal, Canada.
Beane, R.E., 1983. The magmatic–meteoric transition. Geothermal Resources Council, California, Special Report 13, 381 pp.
Bodnar, R.J., 1994. Synthetic fluid inclusions: XII: the system H2O–NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt.% NaCl solution. Geochimica et Cosmochimica Acta, 58(3): 1053–1063.
Bodnar, R.J., 1995. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684.
Bodnar, R.J. and Beane, R.E., 1980. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in pre-ore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Economic Geology, 75(6): 876–893.
Bodnar, R.J., Burnham, C.W. and Sterner, S.M., 1985. Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000ºC and 1500 bars. Geochimica et Cosmochimica Acta, 49(9): 1861–1873.
Bodnar, R.J., Sterner, S.M. and Hall, D.L., 1989. SALTY: a FORTRAN program to calculate compositions of fluid inclusions in the system NaCl–KCl–H2O. Computer Geoscience, 15(1): 19–41.
Brathwaite, R.L., Simpson, M.P., Faure, K. and Skinner, D.N.B., 2001. Telescoped porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulfide-gold-anhydrite veins in the Thames District, New Zealand. Miner Deposita, 36(7): 623–640.
Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11-12): 1390–1393.
Cao, Y., Du, Y., Gao, F., Hu, L., Xin, F. and Pang, Z. 2012. Origin and evolution of hydrothermal fluids in the Taochong iron deposit, Middle–Lower Yangtze Valley, Eastern China: Evidence from microthermometric and stable isotope analyses of fluid inclusions. Ore Geology Reviews, 48(4): 225–238.
Cline, J. and Bodnar, R.J., 1994. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, Molybdenum deposit. Economic Geology, 89(8): 1780–1802.
Cloke, P.L. and Kesler, S.E., 1979. The halite trend in hydrothermal solutions. Economic Geology, 74(8): 1823–1831.
Cox, D.P. and Singer, D.A., 1986. Mineral deposit models. United State Geological Survey, Bulltein 1693, 400 pp.
Dedual, E., 1967. Zur Geologie des mittleren und lnteren Karaj Tales zental Elburz (Iran). M.Sc. Thesis Mitt Geolical institute, Eidgen Technology Hochsch University, Zurrich, 125 pp.
Farahkhah, N., 2009. Petrology and geochemistry of igneous rocks in NE Baraghan with special view on molybdenum mineralization and application of GIS for geological unit enhancement. M.Sc. Thesis. Kharazmi university, Tehran, Iran, 173 pp.
Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment. Economic Geology, 94(8): 1193–1211.
Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology, 66(6): 940-946.
Hall, D.L., Sternert, S.M. and Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197-202.
Harris, A.C., Golding, S.D. and White, N.C, 2005. Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Economic Geology, 100(5): 63–86.
Hayatolgheibi, M., 2011. Mineralogy, geochemistry and fluid inclusion of Cu-Mo Senj deposit (north of Karaj). M.Sc. Thesis. Kharazmi university, Tehran, Iran, 170 pp.
Hedenquist, J.W., Arribas, A. and Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 374–404.
Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519–527.
Heinrich, C.A., Günther, D., Audetat, A., Ulrich, T. and Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by micro-analysis of fluid inclusions. Geology, 27(7): 755–758.
Hezarkhani, A. and Williams-Jones, A., 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusion and stable isotope. Economic Geology, 93(5): 651–670.
Iran Minerals Production and Supply Corporation (IMPASCO), 2009. Report on drilling operation in Senj polymetallic deposit (Tehran province). Ministry of Mines and Metals, Republic Islamic of Iran (unpublished), 440 pp (in Persian).
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, 193 pp.
Liu, W. and McPhail, D.C., 2005. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chemical Geology, 221(1-2): 21–39.
Mahdizade, S., 1995. Geological map of Karaj scale 1:100,000. Geological survey of Iran.
Momenzade, M. and Rachidnejad-Omran, N., 1985. Brief report on Cu-Mo Senj abonden mine. Geological Survey of Iran, Tehran, Report 3, 55 pp.
Norollahi, Z., 2004. Petrology and geochemistry of igneous rocks of the Karaj basement. M.Sc. Thesis. Tehran university, Tehran, Iran, 180 pp.
Pearce, J.A. and Can, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace elements analysis. Earth and planetary science letter, 19(2): 290-300.
Pichab Kavosh, 2007. Detail exploration report of Senj Mo mine. Ministry of Mines and Metals, Republic Islamic of Iran (unpublished), 201 pp (in Persian).
Ramboz, C., Pichavant, M. and Weisbrod, A., 1982. Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(6): 29–48.
Redmond, P.B., Einaudi, M.T., Inan, E.E., Landtwing, M.R. and Heinrich, C.A., 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32(3): 217–220.
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26.
Roedder, E., 1984. Fluid inclusions. Review in Mineralogy, Mineralogical Society of America, United State of America, 646 pp.
Roedder, E. and Bodnar, R.J., 1980. Geological pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Science, 8(1): 263–301.
Rusk, B., Reed, M.H. and Dilles, J.H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2): 307–334.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41.
Sterner, S.M., Hall, D.L. and Bodnar, R.J., 1988. Synthetic fluid inclusions V: solubility relations in the system NaCl–KCl–H2O under vapor saturated conditions. Geochim Cosmochim Acta, 52(2): 989–1005.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norrey (Editors), Magmatism in the Ocean Basins. Geological Society, London, pp. 313–345.
Ulrich, T., Günthur, D. and Heinrich, C.A., 2001. The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 96(3): 1743–1774.
Ulrich, T. and Heinrich, C.A., 2001. Geology and alteration geochemistry of the porphyry Cu– Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 96(8): 1719–1742.
Valizade, M., 1987. Petrological study of igneous rocks of the Karaj dam basement. Basic science journal of Tehran university, 16(2): 5-28.
Valizade, M. and Abdollahi, H.R., Sadeghian, M., 2008. Geological investigation of main intrusions of the central Alborz. Journal of geoscience, 67(17): 182-197.
Van Den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1-4): 27-47.
Williams, P.J., Kendrick, M.A. and Xavier, R.P., 2010. Sources of ore fluid components in IOCG deposits. In: T.M. Porter (Editor), Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective. Porter GeoConsultancy Publishing, Adelaide, Australia, pp. 107–116.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185–187.
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(5): 325-343.
CAPTCHA Image