مطالعات کانی‌ سازی، ژئوشیمی، سیالات ‌درگیر و ایزوتوپ پایدار گوگرد کانسار Cu-Zn-As باقرق با سنگ میزبان کربناته (شمال‌ شرق انارک)

نوع مقاله : علمی- پژوهشی

نویسندگان

فردوسی مشهد

چکیده

کانسار Cu-Zn-As باقرق در شمال شرق شهر انارک و در استان اصفهان قرار دارد. کانی‌سازی به‌صورت دیرزاد، ماهیت چینه‌کران و بافت و ساخت پرکننده فضای خالی در سنگ میزبان کربناتی رخداده است. کانی‌شناسی بخش درون‌زاد شامل کالکوسیت، کالکوپیریت، پیریت، اسفالریت، گالن، انارژیت، باریت و کلسیت و کانیهای بخش برون‌زاد شامل مالاکیت، آزوریت، کوولیت، کریزوکولا، کالکوسیت، سروزیت، اسمیت‌زونیت، مس طبیعی، هماتیت، گوتیت و لیمونیت می‌باشد. سنگ میزبان کربناتی در اطراف زون‌های کانه‌دار متحمل دگرسانیهای دولومیتی‌شدن و کلسیتی‌شدن شده است. مس به‌عنوان عنصر اصلی ذخیره (با میانگین 28/20 درصد وزنی) و پس از آن عناصر روی (با میانگین تقریبی 1 درصد وزنی) و آرسنیک (با میانگین تقریبی 1 درصد وزنی) می‌باشند. مطالعات سیالات‌درگیر روی کانی باریت نشان می‌دهد سیال کانه‌دار سولفیدی دارای محدوده دمای همگن شدن بین 259 تا 354 درجه سانتی‌گراد و میزان شوری بین 8 تا 13 درصد وزنی معادل NaCl می‌باشد. سیال کانه‌دار در مراحل پایانی کانی‌سازی با آبهای جوی دچار اختلاط شده و فاز تأخیری غیر سولفیدی کلسیتی با محدوده دمای نسبتاً پایین ‌(78 تا 112 درجه سانتی‌گراد) و درجه شوری پایین (بین 3 تا 6 درصد وزنی معادل NaCl) را تشکیل داده است. محدوده مقادیر 34Sδ کانی‌ باریت کانسار باقرق بین 13+ تا 14+ در هزار بوده در حالی‌که محاسبه مقدار 34Sδ مربوط به سیال کانه‌دار پس از تصحیح دمایی بین 7- تا 8- در هزار به‌دست آمد. منشأ گوگرد باقرق با توجه به شباهت ایزوتوپ باریت با سولفات‌های دریایی کرتاسه، احتمالاً از لایه‌های تبخیری این دوره زمانی تأمین شده است. این سولفا‌ت‌ها توسط فرآیند‌های ترموشیمیایی به‌صورت بخشی به گوگرد احیایی با مقدار ایزوتوپی سبک‌تر (حدود 21 در هزار) تبدیل و جهت ته‌نشست سولفیدها مورد استفاده قرار گرفته است. کانسار باقرق با توجه به خصوصیاتی همچون سنگ میزبان کربناته، غیاب فعالیت آذرین، بافت پرکننده فضای خالی، دگرسانی دولومیتی،کانی‌شناسی، ژئوشیمی ماده‌معدنی (وجود As و Sb بالا و عدم حضور Bi)، داده‌های دماسنجی و مقادیر ایزوتوپ گوگرد، شباهت زیادی با کانسارهای مس با سنگ میزبان کربناته در افریقا و به‌ویژه نوع سومب (Tsumeb) در نامیبیا نشان می‌دهد. کانسار باقرق احتمالاً مرتبط با سیالات دگرگونی آزاد شده در حین فازهای کوه‌زایی مرتبط با بسته‌شدن اقیانوس نئوتتیس می‌باشد.

کلیدواژه‌ها


Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 582 pp (in persian).
Alavi, M., Vaziri, S.H., Seyed-Emami, K., and Lasemi, V., 1997. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in Central and Northeastern Iran as remnants of the Southern Turanian continental margin. Geological Society of America Bulletin, 109(12): 1563-1575.
Amcoff, O., 1984. Distribution of silver in massive sulfide ores. Mineralium Deposita, 19(1): 63-69.
Bariand, P., 1963. Contribution a la mineralogie de l'lran (Contribution to the mineralogy of Iran). Society Francaise Mineralogie et Cristallographie Bulletin, 86(1): 17-64.
Bazin, D. and Hubner, H., 1969. Copper deposit in Iran. Geological survey of Iran, Tehran. Report 13, 232 pp.
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684.
Brown, P.E. and Lamb, W.M., 1989. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6): 1209-1221.
Cherepovsky, N., Plyaskin, V., Zhitinev, N., Kokorin, Y., Susov, M., Melnikov, B. and Aistov, L., 1982. Report on detailed geological prospecting in Anarak area (Central Iran) Nakhlak locality. Geological Survey of Iran and Technoexport Company, Tehran. Report 14, 196 pp.
Chetty, D. and Frimmel, H.E., 2000. The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia: Geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineralium Deposita, 35(4): 364-376.
Claypool, G.E., Holser, W.T., Kaplan, LB., Sakai, H., and Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28 (3-4): 199-260.
Conner, K. and Anderson, C., 2013. Enargite treatments and pressure oxidation of concentrates. Journal of Metallurgical Engineering, 2(4): 115-123.
Cooke, D.R. and Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13(1): 221-244.
Corbella, M., Ayora, C., and Cardellach, E., 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineralium Deposita, 39(3): 344-357.
Dickson, J.A.D., 1966. Carbonate Identification and Genesis as Revealed by Staining. Journal of Sedimentary Petrology, 36(2): 491-505.
Foley, N.K., 2002. Environmental geochemistry of platform carbonate-hosted sulphide deposits. In: II.R.R. Seal, N.K. Foley (Editors), Progress on geoenvironmental models for selected mineral deposite type. USA geological survey, Denver, Report 02, pp. 87-100.
Frimmel, H.E., Deane, J.G. and Chadwick, P.J., 1996. Pan-African tectonism and the genesis of base metal sulfide deposits in the northern foreland of the Damara Orogen, Namibia. In: D.F. Sangster (Editor), Carbonate-hosted Lead-Zinc Deposits. Society of Economic Geologists, Special Publition 4, pp. 204-217.
Ghazban, F., Mcnutt, R.h., and Schwarcz, H.P., 1994. Genesis of sediment- hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan Area, West- Central Iran. Economic Geology, 89(6): 1262-1278.
Goldschmidt, V.M, 1954. Geochemistry. Oxford University Press, London, 730 pp.
Guilbert, J.M. and Park, Jr.C.F., 1997. The geology of ore deposits. Freeman and Company, New York, 985 pp.
Heyl, A.V, 1983. Geologic characteristics of three major Mississippi Valley districts. In: G. Kisvarsanyi, S.K. Grant, W.P. Pratt and J.W. Koing (Editors), International conference on Mississippi Valley type lead-zinc deposits. University of Missouri-Rolla Press, Rolla, pp. 27-60.
Hoefs, J., 2004. Stable isotope geochemistry. Springer Verlag, Berlin, 244 pp.
Ineson, P.R., 1989. Introduction to Practical Ore Microscopy. Longman publishers, England, 181 pp.
Jazi, M.A., Karimpour, M.H., Malekzadeh, A. and Rahimi, B., 2015. Stratigraphic, lithological and structural controls in placement of Nakhlak deposit (northeast of Esfahan). Advanced Applied Geology, 15(1): 59-75. (in Persian with English abstract)
Jazi, M.A. and Shahabpour, J., 2010. Mineralogical, Textural, Structural and Geochemical aspects of the of Nakhlak Lead mine, Isfahan. Journal of Econmic Geology, 3(2): 131-151. (in Persian with English abstract)
Kamona, A.F., Leveque, J., Friedrich, G. and Haack, U., 1999. Lead isotopes of the carbonatehosted Kabwe, Tsumeb, and Kipushi Pb– Zn– Cu sulphide deposits in relation to Pan African orogenesis in the Damaran– Lu filian fold belt of Central Africa. Mineralium Deposita, 34(3): 273-283.
Kampunzu, A.B., Cailteux, J.L.H., Kamona, A.F., Intiomale, M.M. and Melcher, F., 2009. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copper belt. Ore Geology Reviews, 35(3-4): 263-297.
Karup-Møller, S., 1977. Mineralogy of some Ag-(Cu)-Pb-Bi sulphide associations. Bulletin of the Geological Society of Denmark, 26: 41-68.
Kesler, S.E., 2005. Ore-forming fluids. Elements, 1(1): 13-18.
Kinsland, G.L., 1977. Formation temperature of fluorite in the Lockport dolomite in Upper New York State as indicated by fluid inclusion studies with a discussion of heat sources. Economic Geology, 72(5): 849-854.
Krouse, R.H., Viau, C.A., Eluik, L.S., Ueda, A., and Halas, S., 1988. Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333(6172): 415-419.
Ladame, G., 1945. Les resource metaliferes de Iran. Swiss Bulletin of Mineralogy and Petrology, 25(1): 165-298.
Laznicka, P., 1989. Breccias and ores. Part 1: History, organization and petrography of breccias. Ore Geology Review, 4(4): 314-344.
Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., and Walters, S.S., 2005. Sediment-hosted lead-zinc deposits: A Global Perspective. Economic Geology, 100th Anniversary volume: 561-607.
Lueth, V.W., Megaw, P.K.M., Pinatore, N.E., and Goodell, P.C., 2000. Systematic variation in galena solid solution at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8): 1673-1687.
Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic setting. Sedimentary Geology, 140(1-2): 143-175.
Malakhov, A.A., 1968. Bismuth and antimony in galena as indicators of some conditions of ore formation. Geochemistry International, 7(11): 1055-1068.
Marshall, R.R. and Joensuu, O., 1961. Crystal habit and trace element content of some galena. Economic Geology, 56(4): 758-771.
Melcher, F., Oberthur, T. and Rammlmair, D., 2006. Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu– Zn –Pb –Ag sulfide deposit Otavi Mountain Land, Namibia. Ore Geology Review, 28(1): 32- 56.
Mir-Mohammadi, A., 1977. Die mineralian der Erzgruben in west lichen zentralen Iran. Clausthal Geological, Clausthal-Zellerfeld, Report 27, pp. 11-44 (in german).
Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulphur and carbon. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. Wiley-Interscience, New York, pp. 509-567.
Ohmoto, H., 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5):551-579.
Orr, W.L., 1977. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: R. Campos and J. Goni (Editors) Advances in organic geochemistry. Enadisma, Madrid, pp. 572-597.
Park, F.C. and MacDiarmid, R.A., 1970. Ore Deposits. Freeman and Company, San Francisco, 529 pp.
Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer Science and Business Media, Netherlands, 1250 pp.
Pirajno, F. and Joubert, B. D., 1993. An overview of carbonate-hosted mineral deposits in the Otavi Mountain Land, Namibia: implications for ore genesis. Journal of African Earth Sciences, 16(3): 265-272.
Qian, Z., 1987. Trace elements in galena and sphalerite and their geochemical significant in distinguishing the genetic type of Pb-Zn ore deposits. Geochemistry, 6(2): 177-190.
Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of cretaceous carbonate hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Internatinal Geology Review, 54(14):1649-1672.
Ramdohr, P., 1970. The ore minerals and their intergrowth. Pergamon Press, University of Michigan, Michigan, 1174 pp.
Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Review in mineralogy 12: 644 pp.
Seal, R.R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677.
Shepherd, T.J., Ranbin, A.H. and Alderton, D.H.M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, 239 pp.
Sikka, D.B., Petruk, W., Nehru, C.E. and Zhang, Z., 1991. Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geology Reviews, 6(2-3): 257-290.
Southam, G. and Saunders, J.A., 2005. The geomicrobiology of ore deposits. Economic Geology, 100 (6):1067-1084.
Szczerba, M. and Sawlowicz, Z., 2009. Remarks on the origin of cerussite in the Upper Silesian Zn-Pb deposits, Poland. Mineralogia, 40(1-4): 54-64.
Valenza, K., Moritz, R., Mouttaqi, A., Fontignie, D. and Sharp, Z., 2000. Vein and karst barite deposits in the Western Jebilet of Morocco: fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic Rifting. Economic Geology, 95(3): 587-606.
Vaziri, S.H., Fursich, F.T. and Kohansal-ghadimvand, N., 2012. Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Revista Mexicana de Ciencias Geologicas, 29(2): 384-397.
Viets, J.G., Hopkins, R.T. and Miller, B.M., 1992. Variations in minor and trace elements in sphalerite from Mississippi Valley Type deposits of the Ozark region: genetic implications. Economic Geology, 87(7): 1897-1905.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272.
CAPTCHA Image