Study on mineralization at Jian copper deposit, Fars province, using petrographical and geochemical data

Document Type : Research Article

Authors

Shiraz

Abstract

Jian Cu deposit is hosted by Surian volcano-sedimentary complex of Permo-Triassic age on the eastern edge of the Sanandaj-Sirjan metamorphic zone at a distance of 195 km from Shiraz, southwestern Iran. The complex consists mainly of metabasalt, chlorite-quartz schist, chlorite-muscovite schist, mica schist and graphite schist. Pyrite is the most important sulfide and chalcopyrite is the major Cu-bearing mineral occurring as disseminated grains and veinlets in host chlorite-quartz schist and chlorite-muscovite schist. Chondrite-normalized REE pattern of metabasalt with La/LuN=2/9 indicates mantle tholeiitic basalt as the source of metamorphosed igneous rocks. Geochemical data on the metabasalts, especially the content of immobile elements (e.g., Ti) and High Field Strength Elements (HFSE) (e.g., Zr، Nb and Y), show low degree of partial melting for parental magma with E-MORB affinity. Chloritic, silicification and minor sericitic assemblages are the main alteration types associated with the Jian Cu deposit. The Y/Ho ratio of Cu ores varies from 29.9 to 32.5, indicating the important role of sea water in the mineralizing system. Petrographical and geochemical data indicate that the Jian Cu deposit was formed as volcano-sedimentary hosted massive sulfide. The Ishikawa alteration index (AI) in association with chlorite-carbonate-pyrite index (CCP) is useful for the geochemical exploration of Cu deposits in the study area.

Keywords


[1] اویسی ب.، یوسفی ط.، "پی جویی و اکتشاف نیمه‌تفصیلی ذخایر معدنی سرب و باریت (منطقه بوانات استان فارس)"، سازمان زمین‌شناسی کشور (1375).
[2] تقی پور ن.، "زمین‌شناسی و ژنز رخداد مس جیان- استان فارس"، پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی دانشگاه شیراز، (1379) ص161.
[3] موسیوند ف.، "کانی شناسی، ژئوشیمی و ژنز کانه‌زایی مس در مجموعه آتشفشانی- رسوبی سوریان در منطقه بوانات فارس"، پایان‌نامه کارشناسی ارشد زمین‌شناسی اقتصادی، دانشگاه تربیت مدرس تهران، (1382) ص 247.
[4] Sheikholeslami M. R., "Evolution structural etmetamorphique de la marge suddelamicroplaque de l’Iran central: les complexes metamorphiques de la region deNeyriz (Zone de Sanandaj-Sirjan)", These, universite de Brest, Ph.D thesis (2002) 194p.
[5] Alavi M., "Structures of the Zagros Fold-Thrust belt in Iran", American Journal of Science 13 (2007) 1064–1095.
[6] هوشمندزاده ع.، سهیلی م.، حمدی ب،. "نقشه 2500000/1 اقلید"، سازمان زمین‌شناسی کشور (1369).
[7] اویسی ب.، همکاران،. "نقشه 100000/1 سوریان"، سازمان زمین‌شناسی کشور (1380).
[8] Mousivand F., Rastad E., Hoshino K., Watanabe M., "The Bavanat Cu-Zn-Ag orebody: first recognition of a Besshi-type VMS deposit in Iran", Neues Jahrbuch für Mineralogie – Abhandlungen 183 (2007) 297-315.
[9] Hekinian R., Juteau T., Gracia E., Sichler B., Sichel S., Udintsev G., Apprioual R., Ligi M., "Submersible observation of Equatorial Atlantic Mantal: St.Paul fracture Zone region", Mar Geophys Res 21 (2002) 529-660.
[10] Mousivand F., Rastad E., Meffre S., Jan P., Solomon M., Zaw Kh., "U-Pbgeochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulphide deposit, southern Iran", International Geology Review 53 (2010) 1-‌24.
[11] Peter J. M., Scott S. D., "Windy Craggy, northwestern British Columbia: the world's largest Besshi deposit", Reviews in Economic Geology 8 (1999) 261-295.
[12] Piercey S. J., Jan M., Peter J. M., Mortensen J. K., Paradis S., Murphy D. C., Tucker T. L., "Petrology and U-Pb Geochronology of Footwall Porphyritic Rhyolites from the Wolverine Volcanogenic Massive Sulfide Deposit, Yukon, Canada: Implications for the Genesis of Massive Sulfide Deposits in Continental Margin Environments", Economic Geology 103 (2008) 5-33.
[13] Cox S. F., Ethridge M. A., Hobbs B. E., "The experimental ductile deformation of polycrystalline and single crystal pyrite", Economic Geology 76 (1981) 2105-2117.
[14] Franklin J. M., Gibson H. L., Jonasson I. R., Galley A. G., "volcanic massive sulfide deposit", Economic Geology 100 (2005) 485-627.
[15] McClay K. R., Ellis P. G., "Deformation of pyrite", Economic Geology 79 (1984) 400-403.
[16] Schardt C., Cooke D. R., Gemmell J. B., Large R. R., "Geochemical modeling of the zoned footwall alteration pipe.Hellyer volcanic-hosted
massive sulfide deposit, western Tasmania, Australia", Economic Geology 96 (2001) 1037-1054.
[17] Ishikawa K., Kanisawa S ., Aoki K., "Content and behavior of fluorine in Japanese Quaternary volcanic rocks and petrogenetic application", Journal of Volcanology and Geothermal Research 8 (1980) 161-175.
[18] Large R. R., Gemmell J. B., Paulic H., Huston D. L., "The alteration box: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposit", Economic Geology 96 (2001) 957-971.
[19] Winchester J. A., Floyd P. A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 325-343.
[20] Barrett T. J., MacLean W. H., "Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area", Exploration and Mining Geology 3 (1994) 131-160.
[21] Pearce J., "Sources and settings of granitic rocks", Episodes 19 )1996) 120-125.
[22] Meschede M., "A method of discriminating between different types of mid ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram", Chemical Geology 56 (1986) 207-218.
[23] Pearce J. A., CannJ. R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and Planetary Science Letters 2 (1973) 290-300.
[24] Taylor C. D., Premo W. R., Meier A. L.,Taggart E. T., "The Metallogeny of Late Triassic Rifting of the Alexander Terrain in Southeastern Alaska and Northwestern British Columbia", Economic Geology 103 (2008) 89-115.
[25] Finamore S. M., Gibson H. L., Thurston P. C., "Archean Synvolcanic Intrusions and Volcanogenic Massive Sulfide at the Genex Mine Kamiskotia Area, Timmins,Ontaria", Economic Geology 103 (2008) 1203-1218.
[26] Wood D. A., "The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province", Earth and Planetary Science Letters 50 (1980) 11–30.
[27] Kolb J., Hellmann A., Rogers A., "The role of transcrustal shear zone in orogenic gold mineralization at the Ajjanahalli mine, Dharwarcraton, south India", Economic Geology 99 (2004) 743-759.
[28] Franklin J. M., Lydon J. W., Sangster D. M., "Volcanic associated massive sulfide deposit", Economic Geology 75 (1981) 485-627.
[29] Nielsen R. L., Forsythe L. M., Gallhan W. E., FiskMR., "The major element controls on the partitioning of HFSE between magnetite and mafic to intermediate composition natural silicate liquids at atmosphere", Chemical Geology 117 (1994) 167-193.
[30] Bao Zh., Zhao Zh., Guha J., Williams-Jones A. E., "HFSE, REE and PGE geochemistry of three sedimentary rock-hosted disseminated gold deposits in southwestern Guizhou Province, China", Geochemical Journal 38 (2004) 368-381.
[31] Lixing L., Houmin L., Denghong W., Changqing Z., "Trace Elements and Rare Earth Elements Geochemistry and its Metallogenic Significance for Cu-Zn Ore Deposits in Tongbai Area, Henan Province, China", Earth Science Frontiers 16 (2009) 325–336.
[32] Byrne R. H., Lee J. H., "Comparative yttrium and rare earth element chemistries in seawater", Marin chemistry 44 (1993) 121-130.
[33] Mackenzie W. S., Donaldson C. H., Guilford C., "Atlas of Igneous Rocks and Their Textures ", (1982) 148.
[34] Oelsner O., " Atlas of the most important ore mineral parageneses under the microscope", (1996) 122.
CAPTCHA Image