Afzal, P., Aramesh Asl, R., Adib, A. and Yasrebi, A.B., 2015. Application of fractal modelling for Cu mineralisation reconnaissance by ASTER multispectral and stream sediment data in Khoshname area, NW Iran. Journal of the Indian Society of Remote Sensing, 43: 0255–660. https://doi.org/10.1007/s12524-014-0384-6
Aramesh, Asl,R., Afzal, P., Adib, A. and Yasrebi, A.B., 2015. Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arabian Journal of Geosciences, 8: 2997–3006.
https://doi.org/10.1007/s12517-014-1366-2
Bergen, K.J., Johnson, P.A., De Hoop, M.V. and Beroza, G.C., 2019. Machine learning for data-driven discovery in solid earth geoscience, Science, 363(6433).
https://doi.org/10.1126/science.aau0323
Cheng, Q., 2006. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews. 32(1–2): 314–324.
https://doi.org/10.1016/j.oregeorev.2006.10.002
Cheng, Q., Agterberg, F.P. and Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration. 51(2): 109–130.
https://doi.org/10.1016/0375-6742(94)90013-2
Cheng, Q., Xia, Q., Li, W., Zhang, S., Chen, Z., Zuo, R. and Wang, W., 2010. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences.7(10): 3019–3025.
https://doi.org/10.5194/bg-7-3019-2010
Coates, A., Lee, H., and Ng, A. Y., 2011. An analysis of singlelayer networks in unsupervised feature learning. 14th International Conference on Artificial Intelligence and Statistics (AISTATS) 2011, Fort Lauderdale, FL, USA
Daneshvar Saein, L., Afzal, P., Shahbazi, S. and Sadeghi, B., 2020. Application of an improved zonality index model integrated with multivariate fractal analysis: epithermal gold deposits. Geopersia,12(2): 379–394.
https://doi.org/10.22059/GEOPE.2022.339864.648652
Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saeini, L. and Sadeghi, B., 2022. Combination of machine learning algorithms with concentration-area fractal method for soil geochemical anomaly detection in sediment-hosted Irankuh Pb-Zn deposit, Central Iran. Minerals, 12(6): 689.
https://doi.org/10.3390/min12060689
Farhadi, S., Tatullo, S., Konari, MB. and Afzal, P., 2024. Evaluating Stacking C and ensemble models for enhanced lithological classification in geological mapping. Journal of Geochemical Exploration 260: 107–441.
https://doi.org/10.1016/j.gexplo.2024.107441
Faridi, M., Anvari, A. and Ghassemi, M.R., 2000. Geological map of Hashtchin, scale 1:100000, Geological Organization of the country. Sheet Index 5664.
Grunsky, E.C. and Agterberg, F.P., 1988. Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario. Mathematical Geology, 20(7): 825–861.
https://doi.org/10.1007/BF00890195
Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11).
https://doi.org/10.1109/5.726791
Nabavi, M., 1976. An introduction to the geology of Iran. Geological Survey of Iran, 109: 104–109. (in Persian)
Pourgholam, M.M., Afzal, P., Adib, A., Rahbar, K. and Gholinejad, M., 2024. Recognition of REEs anomalies using an image Fusion fractal-wavelet model in Tarom metallogenic zone, NW Iran. Geochemistry, 84(2): 126093.
https://doi.org/10.1016/j.chemer.2024.126093
Qaderi, S., 2014. Survey of Remote sensing and geochemical exploration of a region in Kermanshah 1:100000 sheet. Master thesis, Urmia University, Urmia, Iran. Retrieved September 26, 2024 from
https://elmnet.ir/doc/10927102-41181
Reichstein, M., Camps Valls, G., Stevens, B., Jung, M., Denzler, J. and Carvalhais, N., 2019. Deep learning and process understanding for data-driven earth system science. Nature, 77(43): 195–204.
https://doi.org/10.1038/s41586-019-0912-1
Scott, A.J. and Knott, M., 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(30): 507–512.
https://doi.org/10.2307/2529204
Sim, B.L., Agterberg, F.P. and Beaudry, C., 1999. Determining the cutoff between background and relative base metal smelter contamination levels using multifractal methods. Computers & Geosciences, 25(9): 1023–1041.
https://doi.org/10.1016/S0098-3004(99)00064-3
Sun, T., Chen, F., Zhong, L., Liu, W. and Wang, Y., 2019. GIS-based mineral prospectivity mapping using machine learning methods: a case study from Tongling ore district, eastern China. Ore Geology Reviews, 109: 26–49.
https://doi.org/10.1016/j.oregeorev.2019.04.003
Ziaii, M., Ardejani, F.D., Ziaei, M. and Soleymani, A.A., 2012. Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry. Applied Geochemistry, 27(3): 663–676.
https://doi.org/10.1016/j.apgeochem.2011.12.020
Ziaii, M., Pouyan, A.A. and Ziaei M., 2009. Neuro-fuzzy modelling in mining geochemistry: Identification of geochemical anomalies. Journal of Geochemical Exploration.100(1): 25–36.
https://doi.org/10.1016/j.gexplo.2008.03.004
Zuo, R., Cheng, Q., Agterberg, F.P. and Xia, Q., 2009. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration,101(3): 225–235.
https://doi.org/10.1016/j.gexplo.2008.08.003
Zuo, R. and Wang, J., 2016. Fractal/multifractal modeling of geochemical data. Journal of Geochemical Exploration. 164: 33–41. https://doi.org/10.1016/j.gexplo.2015.04.010
Send comment about this article