Saveh-Nain-Jiroft Magmatic Belt replaces Urumieh-Dokhtar Magmatic Belt: Investigation of genetic relationship between porphyry copper deposits and adakitic and non-adakitic granitoids

Document Type : Research Article

Authors

1 Department of Geology and Research Center for Ore Deposits of Eastern Iran, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Geological Sciences, University of Colorado, Boulder, U.S.A.

3 Department of Geology, Faculty of Earth Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Introduction
About 75% of world copper, 50% of molybdenum, and 20% of gold are produced from porphyry copper deposits (Sillitoe, 2010) with an average ore grade of 0.45–1.5% Cu, 0.007–0.04% Mo and up to 1.5 ppm Au. Porphyry copper deposits are commonly associated with intermediate composition arc-related igneous rocks with high Sr/Y and La/Yb ratios (Richards, 2011). Igneous rocks having ratios of Sr/ Y > 25 and Y < 10 ppm are considered adakitic type.
The aim of this work is to modify the name of Urumieh-Dokhtar magmatic belt (UDMB), petrological studies of granitoids from Saveh to Jiroft, determination of the genetic relationship between porphyry copper deposits and adakitic and non-adakitic granitoids, and comparison of Miocene-Pliocene adakitic volcanic rock in different parts of Iran with barren adakitic granitoids. The role of a thermal gradient, depth of dehydration, water content, source rock, partial melting percentage, and oxygen fugacity in the formation or non-formation of mineralization, grade, and reserve of porphyry copper deposits are also investigated.
 
Materials and methods
The information used can be divided into three parts: 1) data related to I-type magnetite series granitoids related to porphyry copper deposits of Miocene age in Saveh-Nain-Jiroft magmatic belt (SNJMB) which in Table 2 are presented, 2) data related to barren I-type magnetite series granitoids of Miocene age of SNJBM are reported in Table 3. In addition, radiogenic isotope information of barren and fertile SNJMB granitoids and volcanic rocks is presented in Table 4. 3) Information related to Miocene-Pliocene adakitic volcanic rocks, which is shown in Table 5.
 
Result
Granitoids show the characteristics of subduction zone magmas. So that the enrichment of LILE elements and the depletion of HFSE elements can be seen. Also, enrichment of LILE elements and depletion of HFSE elements of fertile granitoids is more than barren units. Dalli deposit samples show a moderate pattern between barren and fertile granitoids (Fig. 3). All the evidence presented shows that all granitoids are I-type and magnetite series.
In the fertile granitoids, the ratio of (La/Yb)n is between 15 and 38. However, this is between 2 and 14 (mostly below 10) in barren granitoids (Tables 2 and 3, Figs. 5A and 5B). Negative anomalous values ​​of Eu are seen in Miocene barren granitoids (Eu /Eu* value between 0.43 and 1 with an average of 0.65) (Table 3). While fertile granitoids have positive to slightly negative Eu anomalies (Eu / Eu* value between 0.82 and 1.3 with an average of 1.2).
The initial values of 87Sr/86Sr of Miocene fertile granitoids vary between 0.704253 and 0.704702; while in barren granitoids, it is between 0.705 and 0.7085. Fertile Miocene granitoids have positive εNd (i) (0.29 to 3.39 mean 2.15) and in barren units is between 3- and 2.6 (Table 4).
The value of the ratio (La/Yb)n of all volcanic units is between 13 and 78 and mostly above 20. They have positive to slightly negative Eu anomalies (Eu/Eu * values between 0.89 and 1.72) (Table 5). Figure 9 shows the fertile granitoids of the SNJMB similar to adakite volcanic rocks are located in the adakite field. In addition, Figure 11 show that all samples are high silica adakitic type. However, barren granitoids, which are mainly located between Saveh and Nain, are non-adakitic and are plotted within the normal arc range (Fig. 9).
 
Discussion and Conclusion
In this paper, the name of UDMB was changed to Saveh-Nain-Jiroft magmatic belt (SNJMB) based on the evidence of lack of magmatism between Saveh to the extent of Takab and absence of air magnet anomaly. Magmatism of Urumieh to Takab is a continuation of the western Alborz magmatic belt. Based on the characteristics of magmatism and mineralization, SNJMB can be divided into two distinct belts: 1) Saveh-Nain Magmatic Belt (SNMB), which mainly consists of non-adakitic barren I-type magnetic granitoids. Based on the ratio (La/Yb)n, these granitoids originate from a depth of 60 to 80 km, and a mantle wedge and based on the amount of Eu/Eu*, conditions were oxidant. The initial 87Sr / 86Sr ratio indicates that they had a lot of contamination with the continental crust. The crustal thickness in SNMB is less than 48 km, 2) Nain-Jiroft Magmatic Belt (NJMB) which hosts porphyry copper deposits. The Miocene granitoids of this belt are magnetite series and I-type adakite. Based on the ratio (La/Yb)n, these granitoids originate from the depth of garnet stability (more than 90 km) and partial melting of slabs and are based on Eu/Eu* Oxidizing conditions have been established at the place of origin. The initial 87Sr / 86Sr ratio indicates slight contamination with the continental crust. The crustal thickness in NJMB is 48 to more than 52 km.
Geochemically, adakitic volcanic rocks are similar to the fertile adakitic granitoids of NJMB, but these units do not contain any mineralization. The characteristics of the oceanic slabs of Neo-Tethys varied considerably during the SNJMB, leading to various magmatism and mineralization. The thermal gradient, depth of dehydration, amount of water, source rock, and the percentage of partial melting along the belt control the type of magmatism and the formation of mineralization. Note Figure 15.
 
References
Richards, J.P., 2011. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Economic Geology, 106(7): 1075–1081. https://doi.org/10.2113/econgeo.106.7.1075
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
 

Keywords


Abdi, M. and Karimpour, M.H., 2013. Petrochemical characteristics and timing of Middle Eocene granitic magmatism in Kooh-Shah, Lut Block, Eastern Iran. Acta Geologica Sinica, 87(4): 1032–1044. https://doi.org/10.1111/1755-6724.12108
Abers, G.A., van Keken, P.E., Kneller, E.A., Ferris, A. and Stachni, J.C., 2006. The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth and Planetary Science Letters, 241(3–4): 387–397. https://doi.org/10.1016/j.epsl.2005.11.055
Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3): 401–419. https://doi.org/10.1007/s00531-005-0481-4
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5–6): 692–725. https://doi.org/10.1017/S001675681100046X
Aghazadeh, M., 2009. Petrology and Geochemistry of Anzan, Khankandi and Shaivar Dagh granitoids (North and East of Ahar, Eastern Azerbaijan) with references to associated mineralization. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 236 pp.
Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geology Reviews, 70: 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9): 1064–1095. https://doi.org/10.2475/09.2007.02
Alirezaei, A., Arvin, M. and Dargahi, S., 2017. Adakite-like signature of porphyry granitoid stocks in the Meiduk and Parkam porphyry copper deposits, NE of Shahr-e-Babak, Kerman, Iran: Constrains on geochemistry. Ore Geology Reviews, 88: 370–383. https://doi.org/10.1016/j.oregeorev.2017.04.023
Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. and Homam, S.M., 2011. Sr/Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 41(3): 283–296. https://doi.org/10.1016/j.jseaes.2011.02.014
Arjmandzadeh, R. and Santos, J.F., 2014. Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. International Journal of Earth Sciences, 103(1): 123–140. https://doi.org/10.1007/s00531-013-0959-4
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth Science Reviews, 138: 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001
Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P. and Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. International Geology Review, 55(2): 158–184. https://doi.org/10.1080/00206814.2012.689640
Azizi, H. and Stern, R.J., 2019. Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova, 31(5): 415–423.  https://doi.org/10.1111/ter.12404
Babazadeh, Sh., Ghorbani, M.R., Cottle, J.M. and Brocker, M., 2019. Multistage tectono‐magmatic evolution of the central Urumieh–Dokhtar magmatic arc, south Ardestan, Iran: Insights from zircon geochronology and geochemistry. Geological Journal, 54(1): 2447–2471.   https://doi.org/10.1002/gj.3306
Berberian, F.P., 1983. Petrogenesis of Iranian plutons: A study of the Natanz and Bazman intrusive complexes: Unpublished Ph.D. Thesis, Cambridge University, Cambridge, United Kingdom, 315 pp.
Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013
Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene–Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatised mantle source. Lithos, 180–181: 109–127. http://dx.doi.org/10.1016/j.lithos.2013.08.003
Chiaradia, M., 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: An earth scale perspective. Scientific Reports, 5: 8115. https://doi.org/10.1038/srep08115
Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–63: 70–87. http://dx.doi.org/10.1016/j.lithos.2013.01.006
Condie, K.C., 2005. TTGs and adakites: are they both slab melts? Lithos, 80(1): 33–44. https://doi.org/10.1016/j.lithos.2003.11.001
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0
Defant, M.J. and Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6): 65–69. https://doi.org/10.1029/01EO00038
Delacour, A., Früh-Green, G.L., Bernasconi, S.M., Schaeffer, P. and Kelley, D.S., 2008. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR). Geochimica et Cosmochimica Acta, 72(15): 3681–3702. https://doi.org/10.1016/j.gca. 2008.04.039
Esmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6): 961–980. https://doi.org/ 10.1016/j.jseaes.2004.09.003
Fazeli, B., Khalili, M., Toksoy Köksal, F., Mansouri Esfahani, M. and Beavers, R., 2017. Petrological constraints on the origin of the plutonic massif of the Ghaleh Yaghmesh area, Urumieh–Dokhtar magmatic arc, Iran. Journal of African Earth Sciences, 129: 233–247. https://doi.org/10.1016/j.jafrearsci.2016.12.014
Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Lin, W.L., Ayerss, J., Wang, X.C. and Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162
Gardideh, S., Ghasemi, H. and Sadeghian, M., 2018. U-Pb age dating on zircon crystals, Sr-Nd isotope ratios and geochemistry of Neogene adakitic domes of Quchan-Esfarayen magmatic belt, NE Iran.  Iranian Journal of Crystallography and Minerallogy, 26(2): 455–478. (in Persian with English abstract) https://doi.org/10.29252/ijcm.26.2.455
Ghadami, G., Moradian, A. and Mortazavi, M., 2008. Post-collisional Plio–Pleistocene adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamic implications. Journal of Sciences Islamic Republic of Iran, 19(3): 223‌–‌235. (in Persian with English abstract), Retrieved August 20, 2021 from https://journals.ut.ac.ir/pdf_31896_3d5550b30b2590c75543469f305410a2.html
Ghalamghash, J., Schmitt, A. and Chaharlang, R., 2019. Age and compositional evolution of Sahand volcano in the context of post-collisional magmatism in northwestern Iran: Evidence for time-transgressive magmatism away from the collisional suture. Lithos, 344–345: 265–279. https://doi.org/10.1016/j.lithos.2019.06.031
Ghorbani, M.R. and Bezenjani, R.N., 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc, 20(2): 188–202. http://dx.doi.org/10.1111/j.1440-1738.2010.00757.x
Golestani, M., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Haidarian Shahri, M.R., 2018. Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran. Ore Geology Reviews, 93: 290–307. https://doi.org/10.1016/j.oregeorev.2018.01.001
Green, D.H. and Ringwood, A.E., 1967. The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters, 3: 151–160. https://doi.org/10.1016/0012-821X(67)90027-1
Hacker, B.R., 2008. H2O subduction beyond arcs. Geochemistry Geophysics Geosystems, 9(3):Q03001. https://doi.org/10.1029/2007GC001707
Haghighi Bardineh, S.N., Zarei Sahamieh, R., Zamanian, H. and Ahmadi Khalaji, A., 2018. Geochemical, Sr-Nd isotopic investigations and U-Pb zircon chronology of the Takht granodiorite, west Iran: Evidence for post-collisional magmatism in the northern part of the Urumieh-Dokhtar magmatic assemblage. Journal of African Earth Sciences, 139: 354–366. https://doi.org/10.1016/j.jafrearsci.2017.12.030
Haschke, M., Ahmadian, J., Murata, M. and Mcdonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine–Himalayan collision in central Iran. Economic Geology, 105(4): 855–865. http://dx.doi.org/10.2113/gsecongeo.105.4.855
Hassanpour, S., Alirezaei, S., Selby, D. and Sergeev, S., 2014. SHRIMP zircon U–Pb and biotite and hornblende Ar–Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu–Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran. International Journal of Earth Sciences, 104(1): 45–59. https://doi.org/10.1007/s00531-014-1071-0
Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province). Ph.D. Thesis, University of California, Los Angeles, USA, 204 pp.
Hassanzadeh, J., Wernicke, B.P. and Ghazi, A.M., 2009. Timing of Arabia-Eurasia collision in Iran constrained by post- collisional magmatism. Geology Society of America Abstract, 41(7): 407.
Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3): 326–340. https://doi.org/10.1016/j.jseaes.2005.04.005
Honarmand, M., Rashidnejad Omran, N., Corfu, F., Emami, M.H. and Nabatian, G., 2014. Geochronology and magmatic history of a calc-alkaline plutonic complex in the Urumieh-Dokhtar Magmatic Belt, Central Iran: Zircon ages as evidence for two major plutonic episodes. Neues Jahrbuch für Mineralogie – Abhandlungen, 190(1): 67–77. https://doi.org/10.1127/0077-7757/2013/0230
Hosseini, M.R., Hassanzadeh, J., Alirezaei, S., Sun, W. and Li, C.Y., 2017. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: geochemistry and U–Pb zircon geochronology. Lithos, 284-285: 296-309.  https://doi.org/10.1016/j.lithos.2017.03.012
Hosseinkhani, A., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Santos, J.F., 2017. U-Pb geochronology and petrogenesis of intrusive rocks: constraints on the mode of genesis and timing of Cu mineralization in SWSK area, Lut Block. Journal of Geochemical Exploration, 177(6): 11–27. https://doi.org/10.1016/j.gexplo.2017.02.001
Hou, Z.Q., Ma, H.W., Zaw, K., Zhang, Y.Q., Wang, M.J., Wang, Z., Pan, G.T. and Tang, R.L., 2003. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125–145. https://doi.org/10.2113/gsecongeo.98.1.125
Hou, Z.Q., Qu, X.M., Huang, W. and Gao, Y.F., 2001. The Gangdese porphyry copper belt: the second significant porphyry copper belt in Tibetan plateau. Geology in China, 28(10): 27–30. (in Chinese with English abstract)
Hou, Z., Yang, Z., Qu, X., Meng, X., Li, Z., Beaudoin, G., Rui, Z., Gao, Y. and Zaw, K., 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1): 25–51. https://doi.org/10.1016/j.oregeorev.2008.09.006
Hou, Z., Zhang, H., Pan, X. and Yang, Z., 2011. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1–2): 21–45. https://doi.org/10.1016/j.oregeorev.2010.09.002
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geo-chemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
Jim´enez-Munt, I., Fern`andez, M., Saura, E., Verg´es, J. and Garcia-Castellanos, D., 2012. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran). Geophysical Journal International, 190(3): 1311–1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x
Kamali, A.A., Moayyed, M., Amel, N., Hosseinzadeh, M.R., Mohammadnia, K., Santos, J. and Brenna, M., 2018. Post-Mineralization, Cogenetic Magmatism at the Sungun Cu-Mo Porphyry Deposit (Northwest Iran): Protracted Melting and Extraction in an Arc System. Minerals, 8(2): 588. https://doi.org/10.3390/min8120588
Kananian, A., Sarjoughian, F., Nadimi, A., Ahmadian, J. and Ling, W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh Dokhtar Magmatic Arc (Iran): implications for source regions and magmatic evolution. Journal of Asian Earth Sciences, 90: 137-148. https://doi.org/10.1016/j.jseaes.2014.04.026
Karimpour, M.H., 1982. Petrology, geochemistry, and genesis of the A.O. porphyry copper complex in Jackson and Grand Counties, northwestern Colorado. Ph.D. Thesis, University of Colorado Boulder, USA, 251 pp.
Karimpour, M.H., Malekzadeh Shafaroudi, A.,  Lang Farmer, G. and Stern, C.R., 2012.  U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran. Journal of Economic Geology, 4(1): 1–27. (in Persian with English abstract)  https://doi.org/10.22067/econg.v4i1.13391
Karimpour, M.H., Malekzadeh Shafaroudi, A., Moradi, M., Farmer, G.L. and Stern, C.R., 2014. Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh Ahani Cretaceous intrusive rocks, southeast Gonabad. Journal of Economic Geology, 5(2): 267–290. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V5I2.31806
Karimpour, M.H. and Sadeghi M., 2019. A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran. Ore Geology Reviews, 104: 522–539.  https://doi.org/10.1016/j.oregeorev.2018.11.022
Karimpour, M.H., Stern, C.‌R. and L. Farmer, 2010a. Zircon U–Pb geochronology, Sr–Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. Journal of Asian Earth Sciences, 37: 384–393. http://doi:10.1016/j.jseaes.2009.11.001
Karimpour, M.H., Stern, C.‌R. and L. Farmer, 2010b. Rb–Sr and Sm–Nd isotopic compositions, U-Pb Age and Petrogenesis of Khajeh Mourad Paleo-Tethys Leuco-granite, Mashhad, Iran. Scientific Quarterly Journal, Geosciences, 20(80): 171–182. (in Persian with English abstract) https://doi.org/10.22071/GSJ.2011.55249
Karimpour, M.H., Stern, C.R., Farmer, L., Saadat, S. and Malekzadeh Shafaroudi, A., 2011a. Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia, 1(1): 19–36. https://doi.org/10.22059/JGEOPE.2011.22162
Karimpour, M.H, Stern, C.R. and Moradi, M., 2011b. Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad, Iran. Iranian Journal of Crystallography and Mineralogy, 18‌(4): 89–100. (in Persian with English abstract) Retrieved August 20, 2021 from http://ijcm.ir/article-1-502-fa.html
Kazemi, K., Kananian, A., Yilin, X. and Sarjoughian, F., 2019. Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas. Geoscience Frontiers, 10(2): 705–723. https://doi.org/10.1016/j.gsf.2018.04.006
Kerrich, R., Goldfarb, R., Groves, D. and Garwin, S., 2000. The geodynamics of world-class gold deposits: characteristics, space-time distributions, and origins. Reviews in Economic Geology, 13: 501–551. https://doi.org/10.5382/Rev.13.15
Kesler, S.E., Chryssoulis, S.L. and Simon, G., 2002. Gold in porphyry copper deposits: Its abundance and fate. Ore Geology Reviews, 21(1-2):103-124. https://doi.org/10.1016/ S0169-1368(02)00084-7
Khodami, M., 2009. Petrology of Plio-Quaternary volcanic rocks in south-east and north-west of Isfahan. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 174 pp.
Khodami, M., 2019. Pb isotope geochemistry of the late Miocene–Pliocene volcanic rocks from Todeshk, the central part of the Urumieh–Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source. Journal of Earth System Science, 128(6): 167. https://doi.org/10.1007/s12040-019-1185-7
Lechmann, A., Burg, J.P., Ulmer, P., Guillong, M. and Faridi, M., 2018. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos, 304–307: 311–328. https://doi.org/10.1016/j.lithos.2018.01.030
Lee, C.T.‌A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Roux, V.L., Yin, Q.Z. and Jin, D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64–68. https://doi.org/10.1126/science.1217313
Leng, C., Zhang, X., Chen, Y., Wang, S., Gou, T. and Chen, W., 2007. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks. Earth Science Frontiers, 14(5): 199–210. (in Chinese with English abstract)
Magni, V., Faccenna, C., Hunen, J.V. and Funiciello, F., 2014. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-d numerical models. Geology, 42(6): 511–514. https://doi.org/10.1130/G35446.1
Mahdavi, A., Karimpour, M.H., Mao, J., Haidarian Shahri, M.R., Malekzadeh Shafaroudi, A. and Li, H., 2016. Zircon U-Pb geochronology, Hf isotopes and geochemistry of intrusive rocks in the Gazu copper deposit, Iran: Petrogenesis and geological implications. Ore Geology Reviews, 72(1): 818–837. https://doi.org/10.1016/j.oregeorev.2015.09.011
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Mazaheri, S.A., 2010. Rb–Sr and Sm–Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (north of Hanich), east of Iran. Iranian Journal of Crystallography and Mineralogy, 18(2): 15 –32. Retrieved August 20, 2021 from http://ijcm.ir/article-1-530-fa.html
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews, 65(2): 522–544. https://doi.org/10.1016/j.oregeorev.2014.04.015
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3–4): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034
Mao, Q., Yu, M., Xiao, W., Windley, B.F., Li, Y., Wei, X., Zhu, J. and Lü, X., 2018. Skarn-mineralized porphyry adakites in the harlik arc at kalatage, E. Tianshan (NW China): Slab melting in the devonian-early carboniferous in the southern Central Asian orogenic belt. Journal of Asian Earth Sciences, 153: 365–378. https://doi.org/10.1016/j. jseaes.2017.03.021
Martin, H., 1999. The adakitic magmas: modern analogues of Achaean granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/S0024-4937(98)00076-0
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
McInnes, B.I.A., Evans, N.J., Belousova, E. and Griffin, W.L., 2003. Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. CSIRO, Scientific Research Report, 41 pp.
McInnes, B.I., Evans, N.J., Fu, F.Q. and Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and geochemistry, 58(1): 467–498. https://doi.org/10.2138/rmg.2005.58.18
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3–4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Miri Beydokhti, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F. and Klotzli, U., 2015. U–Pb zircon geochronology, Sr–Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 111: 192–205. https://doi.org/10.1016/j.jseaes.2015.07.028
Moradi, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2012a. Sr-Nd isotopic charecteristics, U-Pb zircon geochronology, and petrogenesis of Najmabad granodiorite batholith, eastern Iran. Journal of Economic Geology, 3(2): 127-145. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V3I2.11436
Moradi, M., Karimpour, M.H., Malekzadeh Shafaroudi, A., Farmer, G.L. and Stern, C.R., 2012b. Geochemistry, zircon U-Pb geochronology and Rb-Sr & Sm-Nd isotopes of Najmabad monzonitic rocks south of Ghonabad. Petrology, 3(11): 77–96. (in Persian with English abstract) Retrieved August 20, 2021 from https://ijp.ui.ac.ir/article_16108.html
Nadermezraji, S., Karimpour, M.H., Malekzadeh Shafaroudi, A., Santos, J.F., Mathur, R. and Ribeiro, S., 2018.  U–Pb geochronology, Sr–Nd isotopic compositions, geochemistry and petrogenesis of Shah Soltan Ali granitoids, Birjand, Eastern Iran. Chemie der Erde – Geochemistry,  78(3): 299–313. https://doi.org/10.1016/j.chemer.2018.08.003
Najafi, A., Karimpour, M.H., Ghaderi, M., Stern, C.R. and Farmer, J.L., 2014. Zircon U–Pb geochronology, isotope geochemistry of Rb–Sr and Sm–Nd and petrogenesis of granitoid intrusive rocks in Kajeh exploration area, northwest of Ferdows: evidence for Late Cretaceous magmatism in the Lut block. Journal of Economic Geology, 6(1): 107–135. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V6I1.24415
Nouri, F., Azizi, H., Stern, R.J., Asahara, Y., Khodaparast, S., Madanipour, S. and Yamamoto, K., 2018. Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, central Iran: Partial melts of sub-continental lithospheric mantle and magmatic differentiation. Lithos, 314–315: 274–292. https://doi.org/10.1016/j.lithos.2018.06.013
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3–4): 380–398. https://doi.org/10.1016/j.lithos.2008.09.008
Oyarzun, R., Márquez, A., Lillo, J., López, I. and Rivera, S., 2001. Giant versus small porphyry copper deposits of cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36(8): 794–798. https://doi.org/10.1007/s001260100205
Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Chiu, H.Y. and Li, X.H., 2014. On the magmatic record of the Makran arc, southeastern Iran: Insights from zircon U‐Pb geochronology and bulk‐rock geochemistry. Geochemistry, Geophysics, Geosystems, 15(6): 2151–2169.   https://doi.org/10.1002/2014GC005262
Peacock, S.M. and Wang, K., 1999. Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science, 286(5441): 937–939. https://doi.org/10.1126/science.286.5441.937
Pearce, A.J., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Editor), Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, England, pp. 528–548. Retrieved June 4, 2017 from http://orca.cardiff.ac.uk/id/eprint/8625
Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norry (Editors), Continental Basalts and Mantle Xenoliths. Shiva Publications, Nantwich, Cheshire, pp. 230–249. Retrieved June 4, 2017 from http://orca.cardiff.ac.uk/id/eprint/8626
Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63–81. https://doi.org/10.1007/BF00384745
Qu, X.M., Hou, Z.Q. and Huang, W., 2001. Is the Gangdese porphyry copper belt the Yulong porphyry copper belt in Tibetan Plateau? Mineral Deposits, 20: 355–366. (in Chinese with English abstract)
Rabiee, A., Rossetti, F., Tecce, F., Asahara, Y., Azizi, H., Glodny, J., Lucci, F., Nozaem, R., Opitz, J. and Selby, D., 2019. Multiphase magma intrusion, ore-enhancement and hydrothermal carbonatisation in the Siah- Kamar porphyry Mo deposit, Urumieh-Dokhtar magmatic zone, NW Iran. Ore Geology Reviews, 110: 102930. https://doi.org/10.1016/j.oregeorev.2019.05.016
Raeisi, D., Mirnejad, H. and Sheibi, M., 2019. Emplacement mechanism of the Tafresh granitoids, central part of the Urumieh-Dokhtar Magmatic Arc, Iran: Evidence from magnetic fabrics. Geological Magazine, 156(9): 1–17. https://doi.org/10.1017/S0016756818000766
Rapp, P.R., Shimizu, N., Norman, M.D. and Applegate, G.S., 1999. Reaction between slab-derived melt and peridotite in the mantle wedge: Experimental constrains at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/S0009-2541(99)00106-0
Richards, J.P., 2002. Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism” by Oyarzun et al. (Mineralium Deposita 36:794–798, 2001). Mineral. Deposita, 37(8): 788–790. https://doi.org/10.1007/s00126-002-0284-5
Richards, J.P., 2009. Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247–250. https://doi.org/10.1130/G25451A.1
Richards, J.P., 2011. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Economic Geology, 106(7): 1075–1081. https://doi.org/10.2113/econgeo.106.7.1075
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70: 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009
Richards, J.P., Mcculloch, M.T., Chappell, B.W. and Kerrich, R., 1991. Sources of metals in the porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry. Geochimica et Cosmochimica Acta, 55(2): 565–580. https://doi.org/10.1016/0016-7037(91)90013-U
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295–332. http://dx.doi.org/10.2113/econgeo.107.2.295
Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London, 384pp. https://doi.org/10.4324/9781315845548
Rudnick, R.L. and Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3): 267–309. https://doi.org/10.1029/95RG01302
Rui, Z.Y., Huang, C.K., Qi, G.M., Xu, J. and Zhang, M.T., 1984. The Porphyry Cu (–Mo) Deposits in China. Geological Publishing House, Beijing, 350 pp. (in Chinese with English abstract)
Saleh, R., 2006. Reprocessing of aeromagnetic map of Iran. M.Sc. Thesis, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran. 156 pp.
Samiee, S., Karimpour, M.H., Ghaderi, M., Haidarian Shahri, M.R., Kloetzli, U. and Santos, J.F., 2016. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr–Nd isotopic and U–Pb zircon constraints. Journal of Asian Earth Sciences, 115: 170–182. https://doi.org/10.1016/j.jseaes.2015.09.023
Sarjoughian, F., Azizi, M., Lentz, D.R. and Ling, W., 2018. Geochemical and isotopic evidence for magma mixing/mingling in the Marshenan intrusion: Implications for juvenile crust in the Urumieh–Dokhtar Magmatic Arc, Central Iran. Geological Journal, 54(4): 1–20. https://doi.org/10.1002/gj.3293
Sarjoughian, F. and Kananian, A., 2017. Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, central Iran. Geologica Acta, 15(1): 25–36. https://doi.org/10.1344/GeologicaActa 2017.15.1.3
Sayari, M., 2015. Petrogenesis and evolution of Oligocene-Pliocene volcanism in the central part of Urumieh-Dokhtar Magmatic Arc (NE of Isfahan). Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 178 pp.
Sayari, M. and Sharifi, M., 2018. Anomalies in the depth of the asthenospheric mantle: key to the enigma of adakites in the Urumieh-Dokhtar magmatic arc. Neues Jahrbuch für Mineralogie - Abhandlungen, 195(3): 227–245. https://doi.org/10.1127/njma/2018/0093
Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic– metallogenetic implications. Ore Geology Reviews, 38(1): 27–36. https://doi.org/10.1016/j.oregeorev.2010.05.004
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283. https://doi.org/10.1007/s00126-008-0216-0
Shahsavari Alavijeh, B., Rashidnejad-Omran, N., Toksoy-Köksal, F., Xu, W. and Ghalamghash, J., 2019. Oligocene subduction-related plutonism in the Nodoushan area, Urumieh-Dokhtar magmatic belt: Petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry. Geoscience Frontiers, 10(2): 725–751. https://doi.org/10.1016/j.gsf.2018.03.017
Sherafat, S., 2009. Petrology of Plio-Quaternary volcanic rocks in west and southwest of Yazd province. Ph.D. Thesis, University of Isfahan, Isfahan, Iran, 200 pp.
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/ 10.2113/gsecongeo.105.1.3
Sori, M., 2012. Geochemistry of major, trace and rare earth elements in Chah Firuzeh porphyry, Kerman province. M.Sc. Thesis, Shiraz University, Shiraz, Iran, 156 pp.
Sun, W.D., Ding, X., Ling, M.X., Zartman, R. and Yang, X.Y., 2015. Subduction and ore deposits. International Geology Review, 57(9–10): iii–vi. https://doi.org/10.1080/ 00206814.2015.1029543
Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R. and Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263–‌275. https://doi.org/10.1016/j.gca.2012.10.054
Sun, W.D., Ling, M.X., Chung, S.L., Ding, X., Yang, X.Y., Liang, H.Y., Fan, W.M., Goldfarb, R. and Yin, Q.Z., 2012. Geochemical constraints on adakites of different origins and copper mineralization. Journal of Geology, 120(1):105–120. https://doi.org/10.1086/662736
Sun, S-s., and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implication for mantle compositions and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatic in the ocean basins. Geological Society Special Publications, London, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sun, W.D., Wang, J.T., Zhang, L.P., Zhang, C.C., Li, H., Ling, M.X., Ding, X., Li, C.Y. and Liang, H.Y., 2017. The formation of porphyry copper deposits. Acta Geochimica, 36(1): 9–15. https://doi.org/10.1007/s11631-016-0132-4
Sun, W.D., Zhang, H., Ling, M.X., Ding, X., Chung, S.L., Zhou, J., Yang, X.Y. and Fan, W., 2011. The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 53(5-6): 691–703. https://doi.org/10.1080/ 00206814.2010.507362
Syracuse, E.M., van Keken, P.E., Abers, G.A., Suetsugu, D., Bina, C., Inoue, T. and Jellinek, M., 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1–2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
Tarkian, M., Lotfi, M. and Baumann, A., 1984. Magmatic copper and lead-zinc ore deposits in the Central Lut, East Iran. Neues Jahrbuch Fur Geologie Und Palaontologie-abhandlungen, 168(2–3): 497–523. https://doi.org/10.1127/njgpa/168/1984/497
Thiéblemont, D., Stein, G. and Lescuyer, J.L., 1997. Gisements épithermaux et porphyriques: La connexion adakite Epithermal and porphyry deposits: the adakite connection. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 325(2): 103–109. https://doi.org/10.1016/S1251-8050(97)83970-5
Van Keken, P.E., Hacker, B.R., Syracuse, E.M. and Abers, G.A., 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research Atmospheres, 116(B1): B01401. https://doi.org/10.1029/2010JB007922
Vils, F., Müntener, O., Kalt, A. and Ludwig, T., 2011. Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochimica et Cosmochimica Acta, 75(5): 1249-1271. https://doi.org/10.1016/j.gca.2010.12.007
Wang, J., Zhao, D. and Yao, Z., 2017. Seismic anisotropy evidence for dehydration embrittlement triggering intermediate-depth earthquakes. Scientific Reports, 7: 2613. https://doi.org/ 10.1038/s41598-017-02563-w
White, W.M. and Klein, E.M., 2014. Composition of the Oceanic Crust. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry (Second Edition), Elsevier, Oxford, pp. 457–496. https://doi.org/10.1016/B978-0-08-095975-7.00315-6
Xiao, L. and Clemens, J.D., 2007. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos, 95(3–4): 399-414. https://doi.org/10.1016/j.lithos.2006.09.002
Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q. and Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 30(12): 1111–1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 
Yousefi, F., Sadeghian, M., Lentz, R.D., Wanhainen, C. and Mills, D.R., 2020. Petrology, petrogenesis, and geochronology review of the Cenozoic adakitic rocks of northeast Iran: Implications for evolution of the northern branch of Neo-Tethys. Geological Journal, 56: 298–315.  https://doi.org/10.1002/GJ.3943
Zarasvandi, A., Liaghat, S., Lentz, D. and Hossaini, M., 2013. Characteristics of mineralizing fluids of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Central Iran, determined by fluid inclusion microthermometry. Resource Geology, 63(2): 188–209. https://doi.org/10.1111/rge.12004
Zarasvandi, A., Liaghat, S., Zentilli, M. and Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology, 16(1–2): 11–24. https://doi.org/10.2113/gsemg.16.1-2.11
Zhang, H., Chen, J., Yang, T., Hou, Z. and Aghazadeh, M., 2018. Jurassic granitoids in the northwestern Sanandaj–Sirjan zone: Evolving magmatism in response to the development of a neo-Tethyan slab window. Gondwana Research, 62: 269–286. https://doi.org/10.1016/j.gr.2018.01.012
Zhang, L., Li, S. and Zhao, Q., 2019. A review of research on adakites. International Geology Review, 63‌(1): 47–64. https://doi.org/10.1080/00206814.2019.1702592
Zhang, C.C., Sun, W.D., Wang, J.T., Zhang, L.P., Sun, S.J. and Wu, K., 2017. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343–363. https://doi.org/10.1016/j.gca.2017.03.013
CAPTCHA Image