Abedi, M., Norouzi, G.H. and Torabi, S.A., 2013. Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit. Arabian Journal of Geosciences, 6(10): 3601–3613.
https://doi.org/10.1007/s12517-012-0615-5
Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S. and Daneshvar Saein, L., 2019. Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10(3): 705–715.
https://doi.org/10.22044/JME.2019.8107.1678
Akrami, M.A. and Naderi Mighan, N., 2005. Geological map of Dehsalm (1:100,000). Geological Survey of Iran.
Beydokhti, R.M., Karimpour, M.H., Mazaheri, S.A., Santos, J.F. and Klötzli, U., 2015. U-Pb zircon geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 111: 192–205.
https://doi.org/10.1016/j.jseaes.2015.07.028
Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier, Amsterdam, 365 pp.
Carranza, E.J.M. and Hale, M., 2002. Where porphyry copper deposits are spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11(1): 45–59.
https://doi.org/10.1023/A:1014287720379
Carranza, E.J.M. and Laborte, A.G., 2015. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74: 60–70.
https://doi.org/10.1016/j.cageo.2014.10.004
Cheng, Q., Agterberg, F.P. and Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2): 109–130.
https://doi.org/10.1016/0375-6742(94)90013-2
Fatehi, M. and Asadi, H.H., 2017. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran. Journal of African Earth Sciences, 128: 147–160.
https://doi.org/10.1016/j.jafrearsci.2016.09.007
Geranian, H., Tabatabaei, S.H., Asadi, H.H. and Carranza, E.J.M., 2016. Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25(2): 145–159.
https://doi.org/10.1007/s11053-015-9271-2
John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, F., Graybeal, F.T., Mars, J.C., McPhee, D.K. and Seal, R.R., 2010. Porphyry copper deposit model. US Geological Survey Scientific Investigations, Reston, Report 2010–5070–B, 169 pp.
https://doi.org/10.3133/sir20105070B
Karimpour, M., Stern, C., Farmer, L. and Saadat, S., 2011. Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia, 1(1): 19–54.
https://doi.org/10.22059/JGEOPE.2011.22162
Keykha Hoseinpoor, M. and Aryafar, A., 2014. The use of robust factor analysis of compositional geochemical data for the recognition of the target area in Khusf 1: 100000 sheet, South Khorasan, Iran. International Journal of Mining and Geo-Engineering, 48(2): 191–199.
https://doi.org/10.22059/IJMGE.2014.53107
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2013. Hydrothermal alteration mapping in northern Khur, Iran, using ASTER image processing: a new insight to the type of copper mineralization. Acta Geologica Sinica‐English Edition, 87(3): 830–842.
https://doi.org/10.1111/1755-6724.12092
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Stern, C.R., 2015. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geology Reviews, 65(Part2): 522–544.
https://doi.org/10.1016/j.oregeorev.2014.04.015
Ostadhosseini, A., Barati, M., Afzal, P. and Lee, I., 2018. Prospecting polymetallic mineralization in Ardestan area, Central Iran, using fractal modeling and staged factor analysis. Geopersia, 8(2): 279–292.
https://doi.org/10.22059/GEOPE.2018.254848.648376
Parsa, M., Maghsoudi, A., Yousefi, M. and Sadeghi, M., 2016. Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114: 228–241.
https://doi.org/10.1016/j.jafrearsci.2015.12.007
Porwal, A. and Carranza, E.J.M., 2015. Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71: 477–483.
https://doi.org/10.1016/j.oregeorev.2015.04.017
Porwal, A., Carranza, E.J.M. and Hale, M., 2003. Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India. Natural resources research, 12(3): 155–171.
https://doi.org/10.1023/A:1025171803637
Rodriguez-Galiano, V.F., Chica-Olmo, M. and Chica-Rivas, M., 2014. Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7): 1336–1354.
https://doi.org/10.1080/13658816.2014.885527
Roshanravan, B., Aghajani, H., Yousefi, M. and Kreuzer, O., 2019. An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28(3): 1089–1105.
https://doi.org/10.1007/s11053-018-9439-7
Rotiroti, M., Di Mauro, B., Fumagalli, L. and Bonomi, T., 2015. COMPSEC, a new tool to derive natural background levels by the component separation approach: application in two different hydrogeological contexts in northern Italy. Journal of Geochemical Exploration, 158: 44–54.
https://doi.org/10.1016/j.gexplo.2015.06.017
Shahsavar, S., Rad, A.J., Afzal, P., Nezafati, N. and Aghdam, M.A., 2019. Prospecting for polymetallic mineralization using step-wise weight assessment ratio analysis (SWARA) and fractal modeling in Aghkand Area, NW Iran. Arabian Journal of Geosciences, 12(7): 248–258.
https://doi.org/10.1007/s12517-019-4304-5
Sillitoe, R.H., 2000. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. In: S.G. Hagemann and P.E. Brown (Editors), Gold in 2000. Society of Economic Geologists, Colorado, pp. 315–345.
https://doi.org/10.5382/Rev.13.09
Yousefi, M. and Carranza, E.J.M., 2015b. Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79: 69–81.
https://doi.org/10.1016/j.cageo.2015.03.007
Yousefi, M. and Carranza, E.J.M., 2016. Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25(1): 3–18.
https://doi.org/10.1007/s11053-014-9261-9
Send comment about this article