[1] Aghanabati, A., ˝Geology of Iran˝, Geol, Surv, Iran, (2003) 123-147.
[2] Alavi, M., ˝Tectonic map of the Middle East˝, Geol, Surv, Iran, (1991).
[3] برنا، ب.، و عشق آبادی، م.، "گزارش ارزیابی و اکتشافی کانسارها و اندیس های سرب وروی استان سمنان"، اداره کل معادن و فلزات استان سمنان، (1376) 226 صفحه.
[4] Azizi, H., Jahangiri, A., "Cretaceous subduction- related volcanism in the Northern Sanandaj Sirjan zone, Iran", J.Geodyn 45, (2008) 178-190.
[5] هوشمندزاده، ع.، و همکاران, ˝تحول پدیده های زمین شناسی ترود (پرکامبرین تا عهد حاضر) ˝، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور (1357).
[6] Le Maiter, R.W., ˝A classifications of igneous rocks and glossary of terms˝, Black well scientific publications, (1986) 191 p.
[7] Cox, K.G., Bell, J. D., Pankhust, R.J., ˝The interpretation of igneous rocks˝, George Allen and Unwin, London, (1979).
[8] pearce, J.A., ˝Trace element characteristics of lavas from destructive plate boundaries˝, In, Thorpe, R.S. Andesites, Wiley, New York, (1982) 525-548.
[9] Muller, D., Rock, N.M.S. Groves, D.I., ˝Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings˝, A pilot study, Mineral, (1992) Petrol., 46, 259–289.
[10] Kennedy, A.K., Grove, T.L. Johnson, R.W., ˝Experimental and major element constraints on the evolution of lavas from Lihir Island˝, New Guinea, Contrib. Mineral. Petrol., (1990) 104, 722–734.
[11] Schmidt, G., Palme, H. Kratz, K.L. Kurat, G., ˝Are highly siderophile elements ZPGE, Re and Au˝, fractionated in the upper mantle of the earth, new results on peridotites from Zabargad, Chemical Geology, 163 (2000) 167–188.
[12] Pearce, J.A. and Can, J.R., ˝Tectonic setting of basic volcanic rocks determined using trace elements analysis˝, Earth planet. (1973) 290-30.
[13] Muller, D., Leander, F., Peter, M., and Stev, H., ˝Potassic igneous rocks from the vicinity of epithermal gold mineralization˝, Lihir Island, Papua New Guinea, Lithos, 57 (2001) 163-185.
[14] McDonough, W.F., and Sun, S.-S., ˝The composition of the earth˝, Chemical Geology, 120 (1995) 223–253.
[15] Pearse, J.A., Peate, D.W., ˝Tectonic implications og the composition of the volcanic arc magmas˝, Annual Review of Earth and Planetary Science, (1995) v. 23, 251-285.
[16] Wood, D.A., Joron, J. L., and Treuil, M., ˝A re-appraisal of the use of trace elements to classify and discriminate between magma series in different tectonic setting˝, Earth Planet. Sci. letter, 45 (1980) 326-336.
[17] Hassanzadeh, J., Ghazi, A.V. Axen, G. and Guest, B., ˝Oligomiocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc˝, Geological Society of America Abstracts with Program, 34 (2002) no. 6, 331p.
[18] Downes, P.M., ˝Yerranderie a Late Devonian Silver–Gold–Lead intermediate sulfidation epithermal district˝, Eastern Lachlan Orogen, New South Wales, Australia, Resource Geology, 57 (2006) 1-23.
[19] شرکت تحقیقات و کاربرد مواد معدنی ایران، "اکتشافات ژئوفیزیکی در منطقه گردنه توتو"،(1385) 300 صفحه.
[20] Shepherd, T.J., Rankin, A.H., Alderton, D.H.M., ˝A practical guides to fluid inclusion studies˝, Blackie press, (1985) 239 p.
[21] Roedder, E., ˝Fluid inclusions: Reviews in Mineralogy˝, 12 (1984) 644 p.
[22] Bodnar, R.J., ˝Revised equation and table for determining the freezing point depression of H2O-NaCl solutions˝, Geochimica et Cosmochimica Acta, 57 (1993) 683–684.
[23] Hall, D.l. and Bodnar, R.J., ˝Freezing point depression of NaCl ـ KCl ـ H2O˝, Econ, Geol., 65 (1988) p123.
[24] Camprubi, A., Chomiak, B.A., Canals, A., Norman, D.I., ˝Fluid sources for the La Guitarra epithermal deposit (Temascaltepec district, Mexico): Volatile and helium isotope analyses in fluid inclusions˝, Chemical Geology, 231 (2006) 252-284.
[25] Wilkinson, J.J. ˝Fluid Inclusion in hydrothermal ore deposit˝, Lithos, 55 (2001) 229-272.
[26] Brathwaite, R.L., Faure, K., ˝The Waihi epithermal gold-silver-basemetal sulfide-quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition˝, Econ. Geol, 97 (2002) 269-290.
[27] Simmons, S.F., Gemmell, B. Sawkins, F.J., ˝The Santo Nino silver-lead-zinc vein, Fresnillo district, Zacatecas˝, Mexico: Part II. Physical and chemical nature of ore-forming solutions: Economic Geology, 83 (1988) 1619-1641.
[28] Simmons, S.F. ˝Hydrothermal implications of alteration and fluid inclusion studies in the Fresnillo district˝, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore bodies: Economic Geology, 86 (1991) 1579-1601.
[29] Albinson, T., Norman, D.I. Cole, D. and Chomiak, B., ˝Controls on formation of low-sulfidation epithermal deposits in Mexico˝: Constrains from fluid inclusion and stable isotope data: Society of Economic Geologists, Sp. Publ. 8 (2001) 1-32.
[30] Henley, R. W., ˝The geological framework of epithermal deposits, In Berger. P.M (Ede), Geology and geochemistry of epithermal system˝, Soc Econ. Geol, (1986) p 1-24.
[31] White, D. E., ˝Diverse origins of hydrothermal ore fluids˝, Econ. Geol. 69 (1974) 954-973.
[32] White, N. C., Hedenquist, J. W., ˝Epithermal gold deposits: Styles, Characteristic and exploration˝, Society of Economic Geology Newsletter, 23 (1995) 9-13.
[33] Hedenquist, J.W., Arribas R., A. Gonzalez-Urien, E., ˝Exploration for epithermal gold deposits: Reviews in Economic Geology˝, 13 (2000) 245-277.
[34] Hass, j. l., ˝The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure˝, Econ Geol, 66 (1971) 940-946.
[35] Einaudi, M.T., Hedenquist, J.W. Inan, E.E., ˝Sulfidation state of fluids in active and extinct hydrothermal systems˝:Transitions from porphyry to epithermal environments. Soc. Economic Geology Spec. Pub., 10 (2003) 285– 313.
[36] Sillitoe, R.H., Hedenquist, J.W., ˝Linkages between volcano-tectonic settings, Ore-fluid compositions and epithermal precious metal deposits˝, Society of Economic Geologists Spec. No., 10 (2003) 315 – 343.
[37] Gemmell, J.B., ˝Low, and intermediate-sulfidation epithermal deposits˝, ARC- AMIRAP, Australia, (2004) 57– 63.
[38] Seward, T.M., Barnes, H.L. ˝Metal transport by hydrothermal ore fluids˝, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, New York, John Wiley and Sons, (1997) 435–486.
[39] Palyanaova, G., ˝Physicochemistry modeling of the coupled behavior of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implications˝, Chemical Geology, 255 (2008) 399-413.
[40] Benning, L.G., Seward, T.M. ˝Hydrosulfide complexing of Au in hydrothermal solutions from 150 to 400 ºC and 500 to 1500 bars˝, Geochimica, et. Cosmochimica Acta, 60 (1996) 1849–1871.
[41] Giggenbach, W.F., ˝Theorigin and evolution of fluids in magmatic-hydrothermal systems˝, in Barnes,H.L., Geochemistry of hydrothermal ore deposits, 3rd ed.; New York, Wiley Interscience, (1997) 737-796.
[42] Corbett, g., ˝Controls to low sulphidation epithermal Au/Ag mineralization˝, NSW Australia (2002). [43] Hedenquist, J. W., Lowenstern, J. B., ˝The role of magmas in the formation of hydrothermal ore deposits˝, Nature, 370 (1994) 519-527
Send comment about this article