Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

Document Type : Research Article

Authors

1 Isfahan

2 Payame Noor

Abstract

Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA). They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively.
All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

Keywords


[1] Abdel-Rahman A., “Nature of biotites from alkaline, calc-alkaline and peraluminous magmas”, Journal of Petrology 35 (1994) 525–541.
[2] Foster M. D., “Layer charge relations in the dioctahedral and trioctahedral micas”, American Mineralogist 45 (1960) 383-398.
[3] Foster M. D., “Interpretation of the compositions of trioctahedral micas”, U.S. Geological Survey Professional Paper 354-B (1960) 11-48.
[4] Hazen R. M., Wones D. R., “The efect of cation substitutions on the physical properties of trioctohedral micas”, American Mineralogist 57 (1972) 103-129.
[5] Hazen R. M., Burnham C. W., “The crystal structure of one-layer phlogopit e and annite”, American Mineralgoist 58 (1973) 889-900.
[6] Forbes W. C., Flower M. F. J., “Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20 (OH)4: A: refractory phase in the uppe r mantle?”, Earth and Planetary Science Letters 22 (1974) 60-66.
[7] Holdaway M . J., Lee S. M., “F e-Mg cordierite stability in high-grad e pelitic rocks based on experimental , theoretical and natural observations”, Contributions to Mineralogy and Petrology 63 (1977) 17 5-198.
[8] Holdaway M. J., “Chemical formulae and activity models for biotite, muscovite, and chlorite applicable to pelitic metamorphic rocks”, American Mineralogist 65 (1980) 711-719.
[9] Dymek R. F., “Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses West Greenland”, American Mineralogist 68 (1983) 880-889.
[10] Monier G., “Cristallochimie des micas des leucogranites”, Ph.D. thesis, University of Orleans, France (1985) 347 p.
[11] Monier G., Robert J. L., “Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O± Li2O± MgO± FeO± Al2O3± SiO2± H2O± HF at 600°C, 2
kbar PH2O: comparison with natural lithium micas”, Mineralogical Magazine 50 (1986) 641-651.
[12] Stone M., Exley C. S., George M. C., “Compositions of trioctahedral micas in the Cornubian batholith”, Mineralogical Magazine 52 (1988) 175-192.
[13] Tindle A. G., Webb P. C., “Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks”, European Journal of Mineralogy 2 (1990) 595-610.
[14] Tischendorf G., Gottesmann B., Forster H. J., Trumbull R. B., “On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation” Mineralogical Magazine 61 (1997) 809-834.
[15] Barker D. S., “Igneous rocks”, Englewood cliffs, New jersey (1983) 415 p.
[16] Best M. G., “Igneous and metamorphic petrology”, Blackwell science ltd, Oxford UK, second edition (2003) 729p.
[17] Dilek Y., Imamverdiyev N., Altunkaynak S., “Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint”, International Geology Review 52 (2010) 536–578.
[18] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., “Zagros orogeny: a subduction-dominated process”, In: Lacombe, O., Grasemann, B., Simpson, G. (Eds). Geodynamic Evolution of the Zagros, Geological Magazine 148 (2011) 692-725.
[19] Hessami K., Jamali F., Tabassi H., “Map of major active faults of Iran”, scale 1:2500000, International Institute of Earthquake Engineering and Seismology (2003).
[20] Jackson J., McKenzie D., “Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan”, Geophysical Journal International 77 (1984) 185–264.
[21] Dewey J. F., Hempton M. R., Kidd W. S. F., Saroglu F., Sengo A. M. C., “Shortening of continental lithosphere: The neotectonics of Eastern Anatolia – a young collision zone”, In Coward M. P., Ries A. C., (Eds.), Collision Zone Tectonics, Geological Society of London Special Publication 19 (1986) 3–36.
[22] McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev G., Gurkan O., Hamburger M., Hurst K., Kahle H., Kastens K., Kekelidze G., King R., Kotzev V., Lenk O., Mahmoud S., Mishin A., Ndariya M., Ouzounis A., Paradissis D., Peter Y., Prilepin M., Reilinger R., Sanli I., Seeger H., Tealeb A., Toksoz, M. N., Veis G., “Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus”, Journal of Geophysical Research 105 (2000) 5695–5719.
[23] McClusky S., Reilinger R., Mahmoud S., Ben Sari D., Tealeb A., “GPS constraints on Africa (Nubia) and Arabia plate motions”, Geophysical Journal International 155 (2003) 126–138.
[24] Allen M., Jackson J., Walker R., “Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates”, Tectonics 23 (2004) 1-16.
[25] Dilek Y., Sandvol E., “Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the enozoic orogenic belts in the eastern Mediterranean region”, Geological Society of London, Special Publication 327 (2009) 127–160.
[26] Emami M. H., “Ge´ologie de la re´gion de Qom-Aran (Iran): Contribution a l’e´tude dynamique et ge´ochimique du volcanisme Tertiaire de l’Iran Central”, Ph.D. thesis, France, University of Grenoble, France (1981) 489 p.
[27] Amidi S. M., Emami M. H., Michel R., “Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation”, Geologische Rundschau 73 (1984) 917–932.
[28] Hassanzadeh J., “Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Shahrebabak area), Kerman province”, Ph.D. thesis, University of California, Los Angeles, UCA (1993) 204 p.
[29] Aftabi A., Atapour H., “Regional aspects of shoshonitic volcanism in Iran”, Episodes 23 (2000) 119-125.
[30] Jahangiri A., “Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications”, Journal of Asian Earth Sciences 30 (2007) 433–47.
[31] Ghadami G., Shahre Babaki A. M., Mortazavi M., “Post-Collisional Plio-Pleistocene Adakitic Volcanism in Centeral Iranian
Volcanic Belt: Geochemical and Geodynamic Implications”, Journal of Sciences, Islamic Republic of Iran 19 (2008) 223-235.
[32] Omrani J., Agard P., Witechurch H., Benoit M., Prouteau G., Jolivet L., “Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences”, Lithos 106 (2008) 380–398.
[33] Spear J. A. “Mica in igneous rock” Mineralogical Society of America, Review in Mineralogy 13 (1984) 299-356.
[34] Nachit H., Razafimahefa N., Stussi J. M., Carron J. P., “Composition chimique des biotites et typologie magmatique des granitoides”, Comptes Rendus de l’Academie des Sciences Paris 301 (1985) 813-819.
[35] Rossi P., Chevremont P., “Classification des associations magmatiques granitoïdes”, Geochronique 21 (1987) 14-18.
[36] Holland T., Blundy J., “Non-ideal interactions in calcic amphiboles and their bearing on amphibole –plagioclase thermometry”, Contributions to Mineralogy and Petrology 116 (1994) 433-447.
[37] Anderson J. L., Smith D. R., “The effects of temperature and fO2 on the Al-in-hornblende barometer” American Mineralogist 80 (1995) 549-559.
[38] Sayari M., “APG: An efficient software program for Amp-Pl thermobarometry based on graphical method”, Journal of Sciences, Islamic Republic of Iran 22 (2012) 345-349.
[39] Eugster H. P., Wones D. R., “Stability relations of the ferruginous biotite, annite”, Journal of Petrology 3 (1962) 82-125.
[40] Charette G. G., Flengas S. N., “Thermodynamic properties of the oxides of Fe, Ni, Pb, Cu, and Mn by EMF measurements”, Journal of the Electrochemical Society 115 (1968) 796-804.
[41] Robie, R . A. Waldbaum, D. R., “Thermodynamic properties of minerals and related substances at 298.15°K (25°C) and one atmosphere (1.013 bars) pressure and at higher temperatures”, Geological Survey Bulletin 1259 (1968) 256 p.
[42] Wones D. R., Gilbert M. C., “The fayalite-magnetite-quartz assemblage between 600° and 800°C”, American Journal of Science 267-A (1969) 480-488.
[43] Huebner J. S., Sato M., “The oxygen fugacity-temperature relationship of manganese oxide and nickel oxide buffers”, American Mineralogist 55 (1970) 934-952.
[44] Haas J. L., Robie R. A., “Thermodynamic data for wustite, Fe0.947O, magnetite, Fe3O4 and hematite, Fe2O3 (abstr.)”, Transactions - American Geophysical Union 54 (1973) 483.
[45] Hewitt D. A., “A redetermination of the fayalite-magnetite-quartz equilibrium between 650 and 850°C”, Transactions - American Geophysical Union 57 (1976) 1020.
[46] Chou I. M., “Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor”, American Mineralogist 63 (1978) 690-703.
[47] Wones D. R. Eugster H. P., “Stability of biotite: experiment, theory, and application”, American Mineralogist 50 (1965) 1228–1272.
[48] Nelson S. A., “Geology and petrology of Volcan Ceboruco, Nayarit, Mexico”, Bull Geol Soc Am 91(1980) 2290-2431.
[49] Carmichael I. S. E., “The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates”, Contributions to Mineralogy and Petrology 14 (1967) 36-64.
[50] Carmichael I. S. E., “The redox states of basic and silicic magmas: a reflection of their source?”, Contributions to Mineralogy and Petrology 106 (1991) 129-141.
[51] Ghiorso M. S., Sack R. O., “Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas”, Contributions to Mineralogy and Petrology 108 (1991) 485-510.
[52] Kilinc A., Carmichael I. S. E., Rivers M. L., Sack R. O., “Ferric-ferrous ratio of natural silicate liquids equilibrated in air”, Contributions to Mineralogy and Petrology 83 (1983) 136-140.
CAPTCHA Image