Intermediate sulfidation epithermal mineralization of No. 4 anomaly of Golojeh deposit (N. Zanjan) based on mineralography, alteration and ore fluid geochemistry features

Document Type : Research Article

Authors

Kharazmi

Abstract

The base (Cu–Pb–Zn) and precious metals (Ag±Au) mineralization at the No. 4 anomaly of Golojeh deposit occurred in volcanic and sub–volcanic Eocene–Oligocene host rocks, in the central part of the Tarom–Hashtjin zone. Basic to intermediate volcanic, volcaniclastic and sub–volcanic rocks are dominated in the area and include andesite, basaltic andesite, trachy-andesite, dacite and tuff with affinity to sub–alkaline to high–potassic calc–alkaline series. The mineralization in the area with average grade of Au (0.15 ppm), Ag (0.24%), Cu (0.6%), Zn (4%) and Pb (6%) occurred in two major NW–SE trending quartz–sulfide veins (A and B) with crustiform, breccia, vein–veinlet and open-space filling structure and texture. The sulfide content varies from 5 to 60% and is dominated by galena, sphalerite, chalcopyrite and pyrite. SEM studies indicated presence of Ag (0.47 to 0.66 wt.%) and Cd (0.33 to 0.72 wt.%) in galena and Fe (0.23 wt.%) in sphalerite. Hydrothermal alteration of phyllic (quartz–sericite–pyrite), argillic (quartz–illite/muscovite) and silicification are related to mineralization. Correlation coefficient of metal pairs of Cd–Zn (0.86), Cd–Pb (0.82), Pb–Ag (0.80), Au–Ag (0.75), Pb–Zn (0.70) and Cd–Bi (0.74) was recorded in the quartz–sulfide ore–bearing veins.
Microthermometric studies on two phases liquid–vapor fluid inclusions in ore–bearing veins, shows homogenization temperature to liquid (Thlv→l) in the range of 223 to 287°C and salinity of 6.5 to 17 wt.% NaCl eq. (quartz-hosted) and homogenization temperature ranging from 175 to 244°C and salinity from 1.5 to 12 wt.% NaCl eq. (sphaerite-hosted). First ice–melting temperature (Tmf) ranges of fluid inclusion in sphalerite-hosted of quartz–sulfide ore–bearing veins were recorded between −23 and −18°C in NaCl–H2O system.
Vein–breccia and crustified structure and texture, presence of illite/muscovite alteration assemblage accompanied by high contents of galena, sphalerite and minor chalcopyrite and tennantite, low to moderate temperature and salinity of ore-bearing fluid, low depth of mineralization and Fe–bearing sphalerite features at the No. 4 anomaly of Golojeh deposit, are similar to those of intermediate sulfidation (IS) epithermal base and precious metals vein–type deposit that probably might be related to Cu–Au porphyry system in depth.

Keywords


[1] Alavi M., “Tectonic map of the Middle East: Scale 1:5,000,000”, Tehran, Geological Survey of Iran (1991).
[2] افتخار‌نژاد ج.، "تفکیک بخشهای مختلف ایران از لحاظ وضع ساختمانی در ارتباط با حوضه‌های رسوبی"، نشریه انجمن نفت، شماره 82 (1359) ص 19- 28.
[3] حاج علیلو ب.، "متالوژنی ترشیری البرز غربی- آذربایجان (میانه سیه رود) با نگرشی بر منطقه هشتجین"، چهارمین همایش انجمن زمین‌شناسی ایران، (1378) ص 323-331.
[4] هادی زاده ح.، "اکتشافات ژئوشیمیایی از دیدگاه زمین‌شناسی اقتصادی در محدوده برگه توپوگرافی 50000/1 برندق (از ورقه 100000/1 ماسوله)" ، پایان نامه کارشناسی ارشد دانشکده علوم طبیعی، دانشگاه تبریز، (1383) 147 ص.
[5] قربانی م.، "زمین‌شناسی اقتصادی ذخایر معدنی و طبیعی ایران" ، انتشارات آرین زمین، (1386) 515 ص.
[6] آقانباتی ع.، "زمین شناسی ایران"، انتشارات سازمان زمین‌شناسی کشور، (1383) 345 ص.
[7] Hirayama K., Samimi M., Zahedi M., Hushmandzadeh A. M., "Geology of Tarom district western part (Zanjan area) geology survey of Iran", Geological Survey of Iran, Tehran, Report No 80 (1965) 230 p.
[8] شرکت تحقیقات و کاربرد مواد معدنی ایران، "گزارش نهایی فاز صفر آنومالی شماره 4 کانسار گلوجه"، (1387).
[9] Davis R.G., Hamzehpour B., Clark G.C., "Geology of Masuleh sheet (1/100000) NW Iran", Geological Survey of Iran, Tehran, Report No 24 (1972) 110 p.
[10] مهرابی ب.، طالع فاضل ا.، قاسمی سیانی م.، اقبالی م. ع.، "بررسی نحوه کانی سازی و تشکیل کانسار رگه‌ای مس- طلا گلوجه (شمال زنجان)، بر اساس شواهد کانی شناسی، ژئوشیمی و
میانبارهای سیال"، مجله علوم دانشگاه تهران، شماره 4 (1388) ص 185-199.
[11] مؤید م.، "بررسیهای پترولوژیکی نوار ولکانو- پلوتونیک ترشیری البرز غربی- آذربایجان با نگرشی ویژه بر منطقه هشتجین"، رساله دکتری، دانشگاه شهید بهشتی، (1380) 328 ص.
[12] Cox K. G., Bell J. D., Pankhurts R. J., "The interpretation of igneous rocks", George Allen and Unwin (1979) 450 p.
[13] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastomonon area, northern Turkey", Contribution mineral petrology 58 (1976) 63-81.
[14] شرکت توسعه علوم زمین، " اکتشافات طلا و عناصر همراه در منطقه گلوجه شمال زنجان"، (1384).
[15] Le Maitre R. W., Bateman P., Dudek A., Kellre J., Lameyre Le Bas M. J., Sabine P. A., Schmid R., Sorenson H., Streckeisen A., Woolley A., Zanettin B., “A classifications of igneous rocks and glossary of terms”, Black well scientific publications )1989( [193 p.
[16] Winchester J. A., Floyd P. A., "Geochemical discrimination of different magma series and their differentitation products using immobile elements", Chemical Geology 20 (1977) 325-343.
[17] Irvine T. N., Baragar W. R. A., "A guide to chemical classification of the common volcanic rocks" Canadian jounal of earth science 8 (1971) 523-548.
[18] Wood D. A., Joron J. L., Treuil M., "A re-appraisal of the use of trace elements to classify and discriminate between magma series in different tectonic setting", Earth and Planetary Science Letters 45 (1979) 326-336.
[19] Pearce J. A., Can J. R., "Tectonic setting of basic volcanic rocks determined using elements analysis", Earth planet 8 (1973) 290-300.
[20] Sheppard T. J., Rankin A. H., Alderton, D. H., "A practical guide to fluid inclusion studies", Glasgow Blackie and Sons, Glasgow (1985) 239 p.
[21] Hall D. L., Bodnar R. J., "Freezing point depression of NaClـKClـH2O", Economic Geology 65 (1988) 123-140.
[22] Brown P. E., "FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data", American Mineralogist 74 (1989) 1390-1393.
[23] Cooke D. R., Simmons S. F., "Characteristics and genesis of epithermal gold deposits", Reviews
in Economic Geology 13 (2000) 221-244.
[24] Taylor B. E., "Stable isotope geochemistry of ore-forming fluids", In: Kyser T. K. (Eds.), Stable Isotope Geochemistry of Low Temperature Fluids: Mineralogical Association of Canada, Short Course Handbook 13 (1987) 337-445.
[25] Giggenbach W., "Magma degassing and mineral deposition in hydrothermal s ystems along convergent plate boundaries", Economic Geology 87 (1992) 1927-1944.
[26] Hedenquist J. W., Matsuhisa Y., Izawa E., White N. C., Giggenbach W. F., Aoki M., "Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan", Economic Geology 89 (1996) 1-30.
[27] John D. A., "Miocene and Early Pliocene epithermal gold-silver deposits in the northern Great Basin, western USA: characteristics, distribution, and relationship to magmatism", Economic Geology 96 (2001) 1827–1853.
[28] Yilmaz H., Oyman T., Sonmez F. N., Arehart G. B., Billo Z., "Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey)”, Ore Geology Reviews 37 (2010) 236–258.
[29] Albinson T., Norman D. I., Cole D., Chomiak B., "Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data", Society of Economic Geology Special Publication 8 (2001) 1-32.
[30] Hedenquist J. W., Arribas A. R.,. Gonzalez-Urien E., "Exploration for epithermal gold deposits", In: Hagemann, S. G., Brown P. E. (Eds) Gold in 2000 Reviews in Economic Geology 13 (2000) 245-277.
[31] Henley R. W., Ellis A. J., "Geothermal systems ancient and modern: a geochemical review", Earth Science Reviews 19 (1983) 1–50.
[32] Reyes A. G., "Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment", Journal of Volcanology and Geothermal Research 43 (1990) 279–309.
[33] White N. C., Hedenquist J. W., "Epithermal gold deposits: styles, characteristics and exploration", Society of Economic Geology Newsletter 27 (1995) 1–13.
[34] Davis D. W., Lowenstein T. K., Spencer R. J., "Melting behavior of fluid inclusions in laboratory-
grown halite crystals in systems NaCl−H2O, NaCl−KCl−H2O, NaCl−MgCl2−H2O, and NaCl−CaCl2−H2O", Geochimica et Cosmochimica Acta 54 (1990) 591–601.
[35] Corbett G. J., Leach T. M., "High sulfidation gold-copper systems in South Pacific rim gold-copper systems: structure, alteration, and mineralization", In: Corbett G. J., Leach T. M. (Eds.), Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization: Society of Economic Geologists Special Publication 6 (1998) 101−136.
[36] Sillitoe R. H., Hedenquist J. W., "Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits", In: Simmons S. F., Graham I. (Eds.), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth: Society of Economic Geologists Special Publication 10 (2003) 315–343.
[37] Hedenquist J. W., Arribas A., "Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu-Au deposits", Philippines, Economic Geology 93 (1998) 373–404.
[38] Naden J., Killias S. P., Darbyshire D. P. F., "Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island, Greece", Geology 33 (2005) 541–544.
[39] Lattanzi P., "Applications of fluid inclusions in the study and exploration of mineral deposits", European Journal of Mineralogy 3 (1991) 689–697.
CAPTCHA Image