شناسایی کانه زایی سرب و روی بر اساس بررسی های ژئوشیمیایی رسوبات آبراهه در کمربند فلززایی ملایر-اصفهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده زمین‌ شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

2 گروه زمین‌ شناسی، واحد اهواز، دانشگاه آزاد اسلامی‌، اهواز، ایران

چکیده

کمربند فلززایی ملایر-اصفهان با روند شمال­ غربی-جنوب­ شرقی بزرگ‌ ترین و مهم‌ترین کمربند کانه ­زایی سرب و روی نوع MVT موجود در ایران به‌شمار می ­رود که بیش از 170 کانسار با توانایی معدنی بسیار بالا در آن شناسایی‌شده است.
مهم‌ترین بحث در تحلیل داده­ های ژئوشیمیایی تعیین حد مقدار زمینه برای هر عنصر در منطقه مورد بررسی و جدا کردن زمینه از بی­ هنجاری­ های عنصر مربوطه است. هدف از این پژوهش، بررسی کانه­ زایی و جداسازی بی­ هنجاری ژئوشیمیایی فلزات سرب و روی با استفاده از روش­های آمار کلاسیک، انحراف مطلق از میانه، روش­های مولتی­ فرکتال عیار-تعداد و عیار-مساحت، شاخص سینگولاریتی و نمودار شواهد وزنی در منطقه مورد بررسی است. به‌طور کلی در مجموع 19946 نمونه ژئوشیمیایی از رسوبات آبراه ه­ای که توسط روش ICP-MS و XRF مورد تجزیه و تحلیل قرار‌گرفته، استفاده شده است. ابتدا از طریق روش آمار کلاسیک و انحراف مطلق از میانه با محاسبه مؤلفه‌های آماری به جداسازی جوامع ژئوشیمیایی پرداخته‌شد. پس از آن با استفاده از روش­ های فرکتالی عیار-تعداد و عیار-مساحت و با توجه به خط برازش هر فلز بر روی نمودارهای لگاریتمی و همچنین با استفاده از روش سینگولاریتی و تلفیق آن با نمودار شواهد وزنی، بی­ هنجاری ژئوشیمیایی دو فلز سرب و روی در منطقه مورد بررسی تفکیک شدند. روش فرکتال عیار-مساحت نشان‌داد که مقدار کمینه و بیشنیه عیار برای فلز سرب به‌ترتیب 11/25 ppm و 25/141ppm  و برای فلز روی 09/63 ppm و 68/446 ppm است که بیانگر عیار بیشتر فلز روی در این منطقه است. در نقشه ­های حاصل از روش شاخص سینگولاریتی، دقت بالاتر این روش نسبت به سایر روش­ها، آشکارسازی بی­ هنجاری ­های پنهان و همچنین انطباق بالای بی­ هنجاری­ ها و موقعیت کانسارهای سرب و روی موجود در پهنه مورد‌نظر مشخص‌شد. به‌طور کلی نتایج این روش­ها نشان داد عیار فلزات سرب و روی در جنوب­ شرق و شمال­ غرب منطقه مورد بررسی، بیشترین میزان بی­ هنجاری را دارا هستند و در این مناطق احتمال وجود مناطق امیدبخش کانساری بسیار بالاست.

کلیدواژه‌ها


Afzal, P., Ahmadi. K. and Rahbar. K., 2017a. Application of fractal-wavelet analysis for separation of geochemical anomalies. Journal of African Earth Sciences, 128: 27–36.
Afzal, P., Yasrebi, A.‌B., Saein, L.‌D. and Panahi, S., 2017b. Prospecting of Ni mineralization based on geochemical exploration in Iran. Journal of Geochemical Exploration, 181: 294–‌304.
Agterberg, F.P., 2012. Multifractals and geostatistics. Journal of Geochemical Exploration, 122:113–123.
Agterberg, F.‌P., Cheng. Q., Brown. A. and Good. D., 1996. Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers and Geosciences, 22(5): 497‌–507.
Boveiri Konari, M., Rastad, E. and Peter, J., 2017. A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan, Iran. Journal of Mineralogy and Geochemistry, 194: 61–90.
Carranza, E.J.M., 2009. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis 10: 171–187.
Cheng, Q., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32: 314‌–324.
Cheng, Q. and Agterberg, F.‌P., 1996. Multifractal modeling and spatial statistics. Mathematical Geology, 28(1): 1-16.
Cheng, Q. and Agterberg, F.‌‌P., 2009. Singularity analysis of ore-mineral and toxic traceelements in stream sediments, Computers and Geosciences, 35: 234–244.
Cheng, Q., Agterberg. F.‌P. and Ballantyne. S.‌B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2): 109‌–130.
Cheng, Q., Ping, Q. and Kenny, F., 1997. Statistical and fractal analysis of surface stream patterns in the Oak Ridges Moraine, Ontario, Canada. In Proceedings of the International Association of Mathematical Geology Meeting, University of Barcelona, Barcelona, Spain.
Cheng, Q. and Zhao, P., 2011. Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction. Geoscience Frontiers, 2(1): 67–79.
Daliran, F., Pride, K., Walther, J., Berner, Z.‌A. and Bakker, R. J., 2013. The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide–zinc carbonate mineralization. Ore Geology Reviews, 53: 373–402.
Delavar, S.‌T., Afzal. P., Borg. G., Rasa. I., Lotfi, M. and Omran. N.‌R., 2012. Delineation of mineralization zones using concentration–volume fractal method in Pb–Zn carbonate hosted deposits. Journal of Geochemical Exploration, 118: 98–110.
Deng, J., Wang. Q., Yang. L., Wang. Y., Gong. Q. and Liu. H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105(3): 95-105.
Ehya, F., Lotfi, M. and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences, 37(2): 186–194.
Ghezelbash, R. and Maghsoudi, A., 2018. Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. Comptes Rendus Geoscience, 350(4): 180–191.
Hashemi marand, G., Jafari. M., Afzal. P. and Khakzad. A., 2018. Determination of relationship between silver and lead mineralization based on fractal modeling in Mehdiabad Zn-Pb-Ag deposit, Central Iran. Journal of Earth Sciences, 27(106): 111–118. ‎
Hassanpour, S. and Afzal, P., 2013. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6(3): 957–970.
Hosseini-Dinani, H. and Aftabi, A., 2016. Vertical lithogeochemical halos and zoning vectors at Goushfil Zn–Pb deposit, Irankuh district, southwestern Isfahan, Iran: Implications for concealed ore exploration and genetic models. Ore Geology Reviews, 72: 1004–1021.
Jafari, M.‌A., Kananian, A., Nazarpour, A. and Ghasemi, S., 2018. Comparison of concentration-area (C-A) fractal models and singularity index to separation Pb and Zn geochemical anomalies in the Arak 1:100000 geochemical sheet. The First National Conference of Iranian Geological Remote Sensing Society, 1(1): 210–215. (in Persian with English abstract)
Kananian, A., Jafari, M.‌A. and Nazarpour, A., 2018. Discrimination of Pb and Zn geochemical anomalies using classical, multifractal (C-N) and (C-A) and singularity index statistical methods in Arak 1:100000 sheet. Journal of Advanced Applied Geology, 8(29): 63–74. (in Persian with English abstract)
Karimpour, M.‌H., Malekzadeh Shafaroudi, A., Alaminia, Z., Sevieri, A. and Stern, C., 2019. New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of Irankuh-Ahangaran belt. Journal of Economic Geology, 10(2): 677–706. (in Persian with English abstract)
Karimpour, M.‌H., Malekzadeh Shafaroudi, A., Sevieri, A.‌E., Shabani, S. and Allaz, J.‌M., 2017. mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan. Journal of Economic Geology, 9(2): 267–294. (in Persian with English abstract)
Karimpour, M.‌H. and Sadeghi, M., 2018. Dehydration of hot oceanic slab at depth 30–50 km: KEY to formation of Irankuh-Emarat PbZn MVT belt, Central Iran. Journal of Geochemical Exploration, 194: 88–103.
Leach, D.‌L., Bradley, D., Lewchuk, M.‌T., Symons, D.‌T., de Marsily, G. and Brannon, J., 2001. Mississippi Valley-type lead–zinc deposits through geological time: implications from recent age-dating research. Mineralium Deposita, 36(8): 711–740.
Liaghat, S., Moore, F. and Jami, M., 2000. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran. Mineralium Deposita, 35(1): 72–78.
Lima, A., 2008. Evaluation of geochemical background at regional and local scales by fractal filtering technique: case studies in selected Italian areas. In: B. De Vivo, H.E. Belkin and A. Lima, (Editors), Environmental Geochemistry: Site Characterization, Data Analysis, Case Histories, Elsevier, Amsterdam, pp. 135–152.
Liu, Y., Zhou, K. and Cheng, Q., 2017. A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers and Geosciences, 105: 139–147.
Liu, Y., Xia, Q. and Carranza, E.‌J.‌M., 2019. Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration, 197: 143–158.
Mandelbrot, B.‌B., 1983. The fractal geometry of nature. Freeman, San Francisco, 495 pp.
Mehrnia, S.R., 2016. Application of Fractal Technique for Analysis of Geophysical – Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak). Journal of Economic Geology, 8(2): 325-342. (in Persian with English abstract)
Momenzadeh, M., 1976. Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis. Ph.D. thesis, University of Heidelberg, Heidelberg, Germany, 300 pp.
Momenzadeh, M., Shafighi, S., Rastad, E. and Amstutz, G., 1979. The Āhangarān lead-silver deposit, SE-Malāyer, West Central Iran. Mineralium Deposita, 14(3): 323–341.
Movahednia, M., Rastad, E., Rajabi, A. and Choulet, F., 2017. Mineralogy, geochemistry and genetic processes of supergene non-sulphide ore of the Ab-Bagh Sedimentary-Exhalative (SEDEX-type) Zn-Pb deposit, Sanandaj-Sirjan zone. Journal of Geoscience, 26(103): 249–264. (in Persian with English abstract)
Nazarpour, A., Paydar. G.‌R. and Carranza, E.‌J.‌M., 2016. Stepwise regression for recognition of geochemical anomalies: Case study in Takab area, NW Iran. Journal of Geochemical Exploration, 168: 150–162.
Nazarpour, A., Sadeghi, and B. and Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration, 148: 60–70.
Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. International Geology Review, 54(14): 1649–1672.
Rajabi, A., Rastad, E. and Canet, C., 2013. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: a review for future mineral exploration. Australian Journal of Earth Sciences, 60(2): 197–216.
Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2015, The early Cambrian Chahmir shale-hosted Zn–Pb deposit, Central Iran: an example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50(5): 571–590.
Reimann, C. and de Caritat, P., 2017. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578: 633–648.
Shapiro, S.‌S. and Wilk, M.‌B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4): 591–611.
Sun, X., Gong, Q., Wang, Q., Yang, L., Wang, C. and Wang, Z., 2010. Application of local singularity model to delineate geochemical anomalies in Xiong'ershan gold and molybdenum ore district, Western Henan province, China. Journal of Geochemical Exploration, 107(1): 21–29.
Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading, 688 pp.
Wang, J. and Zuo, R., 2015. A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Science Informatics, 8(4): 937–947.
Wang, J. and Zuo, R., 2018. Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers and Geosciences, 118: 52–64.
Wilkinson, JJ., 2014. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives. H. Holland and K. Turekian (Editors), Treatise on Geochemistry, Elsevier, Amsterdam, pp. 219–249.
Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y. and Erten, O., 2018. A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189: 122–137.
Yarmohammadi, A., Rastad, E., and Rajabi, A., 2016. Geochemistry, fluid inclusion study and genesis of the sediment-hosted Zn-Pb (±Ag±Cu) deposits of the Tiran basin, NW of Esfahan, Iran. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 193(2): 183–203.
Zhai, D., Liu, J., Cook, N.‌J., Wang, X., Yang, Y., Zhang, A. and Jiao, Y., 2019. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1): 47–66.
Zuo, R., 2014a. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139: 170–176.
 
Zuo, R., 2014b. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas. Journal of Geochemical Exploration, 136: 93–101.
Zuo, R., Cheng, Q., Agterberg, F.‌P. and Xia, Q., 2009. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3): 225–235.
Zuo, R. and Wang. J., 2016. Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration, 164: 33–41.
Zuo, R., Wang, J., Chen, G. and Yang, M., 2015. Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration,148: 12–24.
CAPTCHA Image