سنگ‌ شناسی، سن‌ سنجی، ژئوشیمی و تعیین منشأ توده‌ های گرانیتوئیدی منطقه بجستان، شمال فردوس، استان خراسان رضوی

نوع مقاله : علمی- پژوهشی

نویسندگان

1 فردوسی مشهد

2 وین

3 آویرو

چکیده

توده های گرانیتوئیدی بجستان در شرق شهر بجستان، جنوب غرب استان خراسان رضوی واقع شده اند. توده های عمیق و نیمه عمیق اسیدی برون‌زد یافته در این منطقه دارای ترکیب سینوگرانیتی، مونزوگرانیتی و گرانیتی هستند. نتایج سن‌سنجی نشانگر حضور دو فاز ماگماتیسم در منطقه است. توده های بیوتیت‌ مونزوگرانیت، گرانیت ‌پورفیری و سینوگرانیت، دارای سن کرتاسه بالایی، کامپانین (76-79 میلیون سال) است و تنها توده پیروکسن هورنبلند بیوتیت مونزوگرانیت در جنوب‌غرب محدوده مورد بررسی، دارای سن الیگوسن (5/1±7/30 میلیون سال) است. در توده های با سن کرتاسه بالایی، میزان 87Sr/86Sr اولیه بین 710898/0 تا 717908/0 و 143Nd/144Nd اولیه بین 512058/0 تا 512211/0 و єNdI در دامنه 38/7- تا 65/10- متغیر است. نسبتهای 87Sr/86Sr و 143Nd/144Nd اولیه و єNdI برای توده پیروکسن هورنبلند بیوتیت مونزوگرانیت به‌ترتیب 713292/0، 512186/0 و 06/8- است. از نظر ویژگیهای ژئوشیمیایی، توده های بالا، عمدتاً ماهیت پرآلومین دارد و به گرانیتوئیدهای تیپ S دسته احیایی (ایلمینیت) تعلق دارند. با توجه به نتایج بررسیهای انجام شده، منشأ توده های نفوذی منطقه، پوسته ای و حاصل ذوب رسوبات دگرگون شده با ترکیب پسامیت و مرتبط با زون برخورد است. توده های گرانیتوئیدی با سن کرتاسه بالایی منطقه بجستان در مقایسه با سایر توده های متعلق به کرتاسه بالایی، مانند بزمان، گزو و کجه، دارای نسبت بالاتر 87Sr/86Sr هستند. توده پیروکسن هورنبلند ‌بیوتیت ‌مونزوگرانیت با سن الیگوسن با دارا بودن ویژگیهای مشابه با توده های کرتاسه بالایی، نشان‌دهنده ادامه محیط زون برخوردی در این بخش از بلوک لوت است.

کلیدواژه‌ها


Aghanabati, S.A., 2013. Geology of Iran and Neighbouring countries. Geological Survey of Iran, Rahi press, Tehran 710 pp.
Ahmadirouhani, R., Karimpour, M.H., Rahimi, B. and Malekzadeh Shafaroudi, A., 2015. Enhance of alteration zones and lineation in the east of Bajestan using SPOT, ASTER, ETM+ and Geophysics data. Scientific Quaternary Journal Geosciences, 24(94): 253-262.
Arjmandzadeh, R., 2011. Mineralization, geochemistry, geochronology, and determination of tectonomagmatic setting of intrusive rocks in Dehsalm and Chahshaljami prospectareas, Lut block, east of Iran. PhD. Thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 215 pp. (in Persian)
Arjmandzadeh, R. and Santos, J.F., 2014. Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut block, eastern Iran. International Journal of Earth Science, 103(1): 123-140.
Ashoori, A.R., Karimpour, M.H. and Saadat, S., 2005. Geological map of Bajestan. scale:1:100000. Geological Survey of Iran.
Berberian, F., 1981. Petrogenesis of Iranian plutons: a study of the Natanz and Bazman complex. Unpublished Ph.D. Thesis, University of Cambridge, Cambridge, England, 300 pp.
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Editor), Rare earth element geochemistry.Elsevier, Amsterdam, pp. 63-114.
Chappell, B.W. and White, A.J.R., 1974. Two contrasting granite types, Pac. Geology, 8:173-174.
Chappell, B.W. and White, A.J.R., 1992. I- and S- type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburg, Earth Science, 83(1-2): 1-26.
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite type: 25 years later. Australian Journal of Earth Science, 48(4): 489–499.
Eftekharnezhad, J., Valeh, N., Ruttner. A., Nabavi, M.H., Hajian, J., Alavi, M. and Haghipour, A., 1977. Geological map of Ferdows. scale: 1:250.000. Geological Survey of Iran.
Esmaeily, D., Ne´de´lecb, A., Valizadeha, M.V., Moorec, F. and Cotten J.2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6) : 961–980.
Ghurchi, M., Ashoori, A.R. and Saadat, S., 2009. Petrology, Alteration and mineralization of Taher-abad and Bajestan intrusive bodies. Journal of Economic geology, 1(1): 83–101.
Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics (Minerals, Rocks and Mountains). Springer, Germany, 392 pp.
Harris, C., 1983, The petrology of lavas andassociated plutonic inclusions of AscensionIsland. Journal of Petrology, 24(4): 424-470.
Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293–305.
Ishihara, S., 1981. The granitoid series and mineralization. Economic Geology, 75: 458 – 484.
Jung, D., Keller, J., Khorasani, R., Marcks, Chr., Baumann, A. and Horn, P., 1983. Petrology of the Tertiary magmatic activity the northern Lut area, east of Iran, Ministry of mines and metals.Geological Survey of Iran,Tehran, Report 51, 519 pp.
Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2009a. Rb–Sr and Sm–Nd Isotopic compositions, U-Pb Age and Petrogenesis of Khajeh Mourad Paleo-Tethys Leucogranite, Mashhad, Iran. Quarterly Journal of Earth Sciences, 20(3): 171–182.
Karimpour, M.H., Malekzadeh Shafaroudi, A., Mazaheri, A. and Heydarian shahri, M.R., 2007. Magmatism and Cu, Au, Sn and W mineralization types in the Lut block. The 15th Symposium of the Society of Crystallography & Mineralogy of Iran, Ferdowsi University of Mashhad, Mashhad, Iran.
Karimpour, M.H., Malekzadeh Shafaroudi, A., Stern, C.R. and Hidarian, M.R., 2008. Using ETM+ and airborne geophysics data to locating porphyry copper and epithermal gold deposits in Eastern Iran. Journal of Applied Science, 8: 4004-4016.
Karimpour, M.H., Stern, C.R., Farmer, L., Saadat, S. and Malekzadeh Shafaroodi, A., 2011. Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut block, eastern Iran. Geopersia, 1(1): 19–36.
Karimpour, M.H., Stern, C.R., Malekzadeh‌ Shafaroudi, A., Heidarian, M.R. and Mazaheri, A., 2009b. Petrochemistry of the reduced, ilmenite-series granitoid intrusion related to the Hired Au-Sn prospect, Eastern Iran. Journal of Applied Sciences, 9(2): 226–236.
Katongo, C., Koller, F., Klötzli, U., Koeberl, Ch., Tembo, F. and Waele, B., 2004. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoprotrozoic- Paleozoic Lufilian- Zambezi belt, Zambia: Implications for tectonic setting and regional correlation. Journal of African Earth Sciences, 40(5): 219–244.
Klötzli, U., Klötzli, E., Günes, Z. and Kosler, J., 2009. Accuracy of laser ablation U–Pb zircon dating: results from a test usingfive different reference zircons. Geostandards andGeoanalytical Research, 33(1): 5–15.
Ludwig, K.R., 2008. User's manual for Isoplot/Ex version 3.70. A geochronological tool kit for Microsoft Excel. Berkeley Geochronology Center Special, Publication, No. 4.
Mahdavi, A., Karimpour, M.H., Mao, J., Haidarian Shahri, M.R. and Malekzadeh Shafaroudi, A., 2016. Hongying Li, Zircon U-Pb geochronology, Hf isotopes and geochemistry of intrusive rocks in the Gazu copper deposit, Iran. Petrogenesis and geological implications, Ore Geology Reviews, 72(1): 818–837.
Malekzadeh Shafaroudi, A., 2009. Geology, mineralization, alteration, geochemistry, microthermometry, isotope studies and determining the mineralization source of Khoopic and Maherabad exploration areas. Ph.D. thesis. Ferdowsi university of Mashhad, Mashhad, Iran, 606 pp.
McCulloch, M.T. and Bennett, V.C., 1994. Progressive growth of the Earth’s continentalcrust and depleted mantle: Geochemical constraints. Geochimica et Cosmochimica Acta, 58(21): 4717-4738.
McCulloch, M.T., Kyser, T.K., Woodhead, J.D. and Kinsley, L., 1994. Pb–Sr–Nd–O isotopic constraints on the origin of rhyolites from the Taupo volcanic zone of New Zealand: evidence for assimilation followed by fractionation of basalt. Contributions to Mineralogy and Petrology, 115:(3) 303–312. Middlemost, E.A.K., 1985. Magmas and magmatic rocks. Longman, London & New York , 266 pp.
Miri Beydokhti, R., Karimpour, M.H., Mazaheri, A., Santos, J. and Klötzli, U., 2015. U–Pb zircon geochronology, Sr–Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut block, eastern Iran). Journal of Asian Earth Sciences, 111: 192–205.
Moradi, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2011. Isotope geochemistry of Rb-Sr & Sm- Nd, U- Pb geochrology and petrogenesis of Najmabad granodirite batholith, Gonabad. Journal of Economic geology, 3(2): 127–143.
Najafi, A., Karimpour, M.H., Ghaderi, M., Stern, C.R. and Farmer, G.L., 2014. U-Pb dating of zircon, Isotope geochemistry of Rb-Sr & Sm- Nd and petrogenesis of granitoid intusives in Kaje prospect, north west of Ferdows, evidence on Late Cretaceous magmatism in the Lut block. Journal of economic geology, 6(1):107–135.
Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at active continental margins. In : C.J. Hawkesworth and M.J. Norry (Editors), Continental basalts and mantle xenoliths- Nantwich, UK, Shiva, pp. 230–249.
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983.
Pearce, J.A. and Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: H.M, Prichard, T. Albaster, N.B.W. Harris and C.R. Neary (Editors), Magmatic Processes in Plate Tectonics. Geological Society , London, pp. 373– 403.
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.
Pourlatifi. A., 2002. Geological map of Ferdows. scale: 1:100000, Geological survey of Iran.
Reagan, M.K. and Gill, J.B., 1989. Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. Journal of Geophysical Research, 94(B4): 4619 – 4633.
Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012. High Sr/Y reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran western Pakistan. Economic Geology, 107(2): 295–332.
Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, and Interpretation. Longman Science and Technical,Routledge, 352 pp.
Rudnick, R.L., 1995. Making continental crust. Nature, 378(6557): 571-578.
Samiee, S., Karimpour, M.H., Ghaderi, M., Heidarian Shahri, M.H., Klöetzli, U. and -Santos, J., 2016. Petrogenesis of Subvolcanic rocks from the Khunik Prospecting Area, South of Birjand, Iran: Geochemical, Sr-Nd Isotopic and U-Pb Zircon Constraints. Journal of Asian Earth Sciences, 115(15): 170–182.
Shand, S.J., 1947. Eruptive rocks: Their genesis, composition, classification and their relation to ore-deposits. Hafner Publishing Company, New York, 488 pp.
Slama, J., Kosler, J., Schaltegger, U., Tubrett, M. and Gutjahr, M., 2006. New natural zircon standard for laser ablation ICP-MS U-Pb geochronology. Winter Conference on Plasma Spectrochemistry, Tucson, Arizona,US.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geology Society Special Publication, 42(1): 313–345.
Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44.
Tarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran, Ministry of Mines and Metals. Geological Survey of Iran, geodynamic project (geotraverse) in Iran, 51: 357–383.
Taylor, S.R. and McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, 312 pp.
Thompson, A.B., 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science, 282(10): 1567–1595.
Vervoort, J.D., Patchett, P.J., Blichert Toft, J., Albarede, F., 1999. Relationship between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168(1-2):79-99.
Watt, G.R. and Harley, S.L., 1993. Accessory phase controls on the geochemistry of crustal melts and restites produced during waterundersaturated partial melting. Contributions to Mineralogy and Petrology, 114(4): 550–566.
Whalen, J.B., Currie, K.L. and Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419.
Whitney, D.L. and Evans, B.W., 2010.Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187.
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Dordrecht Springer, Netherland, 466 pp.
CAPTCHA Image