The mass balance calculation of hydrothermal alteration in Sarcheshmeh porphyry copper deposit

Document Type : Research Article

Authors

Bu-Ali Sina

Abstract

Sarcheshmeh porphyry copper deposit is located 65 km southwest of Rafsanjan in Kerman province. The Sarcheshmeh deposit belongs to the southeastern part of Urumieh-Dokhtar magmatic assemblage (i.e., Dehaj-Sarduyeh zone). Intrusion of Sarcheshmeh granodiorite stock in faulted and thrusted early-Tertiary volcano-sedimentary deposits, led to mineralization in Miocene. In this research, the mass changes and element mobilities during hydrothermal process of potassic alteration were studied relative to fresh rock from the deeper parts of the plutonic body, phyllic relative to potassic, argillic relative to phyllic and propylitic alteration relative to fresh andesites surrounding the deposit. In the potassic zone, enrichment in Fe2O3 and K2O is so clear, because of increasing Fe coming from biotite alteration and presence of K-feldspar, respectively. Copper and molybdenum enrichments resulted from presence of chalcopyrite, bornite and molybdenite mineralization in this zone. Enrichment of SiO2 and depletion of CaO, MgO, Na2O and K2O in the phyllic zone resulted from leaching of sodium, calcium and magnesium from the aluminosilicate rocks and alteration of K-feldspar to sericite and quartz. In the argillic zone, Al2O3, CaO, MgO, Na2O and MnO have also been enriched in which increasing Al2O3 may be from kaolinite and illite formation. Also, enrichment in SiO2, Al2O3 and CaO in propylitic alteration zone can be attributed to the formation of chlorite, epidote and calcite as indicative minerals of this zone.

Keywords


[1] Evans M. A., “Ore Geology and Industrial Minerals An Introduction”, Blackwell Science Ltd and Blackwell Publishing company (1993) 389.
[2] Lowenstern J. B., “Carbon dioxide in magmas and implications for hydrothermal systems”, Mineralium Deposita 36 (2001) 490-502.
[3] Waterman G. C., Hamilton R., “The sarcheshmeh porphyry copper deposit”, Economic Geology 70 (1975) 568-576.
[4] Jung D., Kürsten M., Takian M., “Post-Mesozoic volcanism in Iran and its relation to the subduction of the Afro-Arabian under the Eurasian plate”, In: Pilger, A., Rosler, A. (Eds.), Afar between continental and oceanic rifting. Schweizerbartsche Verlaghuchhandlung, Stuttgart (1976) 175-181.
[5] Vialon P., Houshmandzadeh A., Sabzahei M., “Dum model pevolution petrostructural de quelques montagenese Iraniennes”, comme une consequence de la tectonique des pbques. Geology Congr 3 (1972) 196-208.
[6] Forster H., “Mezozoic-Cenozoic metallogenesis in Iran”, Journal of the Geological Society 135 (1978) 443-445.
[7] Etminan H.,. “Fluid inclusion studies of the porphyry copper ore bodies at Sar-Cheshmeh, Darreh Zar and Mieduk (Kerman region, southeastern Iran) and porphyry copper discoveries at Sar-Cheshmeh, Gozan, and Kighal, Azarbaijan region (northwestern Iran)”, International Association. Genesis of ore deposits Fifth Symposium, Snowbird, Utah, Abstract 88 (1978).
[8] Shahabpour J., “Aspects of alteration and mineralization at the Sarcheshmeh copper - molybdenum deposit. Kerman, Iran”, Unpub Ph.D. thesis., Leeds University (1982) 342.
[9] Bazin D., Hübner H., “Copper deposits in Iran. Geology survey of Iran”, Peport 13 )1969) 232.
[10] Shahabpour J., “The role of deep structures in the distribution of some major ore deposits in Iran, NE of Zagros thrust zone”, Journal of geodynamics 28 (1999) 237-250.
[11] Dimitrijevic M. D., “Geology of Kerman region”, Geological Survey of Iran Report 52 (1973) 334.
[12] Lowell J. D., Guilbert J. M., “Lateral and vertical alteration-mineralization zoning in porphyry ore deposits”, Economic Geology 65 (1970) 373-408.
[13] Shahabpour J., Kramers J. D., “Lead isotope data from the Sar-Cheshmeh porphyry copper deposit, Iran”, Mineralium Deposita 22 (1987) 278-281.
[14] Beane R. E., Bodnar R. J., “Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits”, In Pierce F. W., and Bohm J. G., eds., porphyry copper deposits of the American Cordillera, Arizona Geological Society Digest 20 (1995) 82-93.
[15] Corbett G. J., “Epithermal gold for exploration”, Astralian Institute of Geoscientists Presidents Lecture: AIG Journal 67 (2002) 1-8.
[16] کریم پور م.ح.، سعادت س.، "زمینیشناسی اقتصادی کاربردی"، نشر مشهد، ویرایش جدید، (1381) ص533 .
[17] Hedenquist J. W., Arribas A. Jr., Gonzalez-Urien E., “Exploration for epithermal gold deposits”, Reviews in Economic Geology 13 (2000) 245-277.
[18] Fedo C. M., Nesbitt H.W., Young G.M., “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, With implications for paleoweathering conditions and provenance”, Geology 23 (1995) 921-924.
[19] Voicu G., Bardoux M., Jebrak M., “Normative mineralogical calculations for tropical weathering profiles”, Winnipeg 96, Ann. Meet., Geol. Asso. Can. Mineral. Assoc. Can. Prog 21 (1996).
[20] Aiuppa A., Allard P. D., Alessandro W., Michel A., Parello F., Treuil M., Valeza M., “Mobility and fluxes of major elements, minor and trace metals during basalt weathering and groundwater transpoet at Mt. Enta volcano sicily”, Geochimica et Cosmochimica Acta 64 (2000) 1827-1841.
[21] Terakado Y., Fujitani T., “Behaviour of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks Southweastern Japan”, Geochimica et Cosmochimica Acta 62(11) (1998) 1903-1917.
[22] Grant J. A., “The isocon diagram- a simple solution to Gresens’ equation for metasomatic alteration”, Economic Geology 81 (1986) 1976-1982.
[23] Gresens R. L., “Composition-volume relationships of metasomatism”, Chemical Geology 2 (1967) 47-65.
[24] Mori Y., Nishiyama T., Yanagi T., “Mass transfer paths in alteration zones around carbonate veins in the Nishisonogi Metamorphic Rocks, southwest Japan”, American Mineralogist 88 (2003) 611-623.
[25] Cail T. L., Cline J. S., “Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, North-central Nevada”, Economic Geology 96 (2001) 1343-1359.
[26] Leitch C. H. B., Lentz D. R., “The Gresens approach to mass balance constraints of alteration systems: Methods, pitfalls, examples”, In Alteration processes associated with ore-forming systems, Edited by D. R. Lentz, Geological Assocciation of Canada, Short Course Notes 11 (1994) 161-192.
[27] Grant J. A., “Isocon analysis: A brief review of the method and applications”, Physics and Chemistry of the Earh 30 (2005) 997-1004.
[28] معانی جو م.، رسا ا.، لنتز د.، علیرضایی س.، "سنگ-نگاری و دگرسانی کانسار مس چهل کوره، شمال باختر زاهدان: موازنه جرم و رفتار عناصر نادر کمیاب"، مجله علوم‌زمین، شماره 67 (1387) ص 86-101.
[29] Rollinson H. R., “Using geochemical data eavaluation”, Presentation, Interpretation, Longman Pudlishing Group (1993) 384.
[30] Hezarkhani A., “Hydrothermal evolutions at the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran: evidence from fluid inclusions”, Journal of Asian Earth Sciences 28 (2006) 408-422.
[31] امین زاده ب.، "مطالعه کانی شناسی و ژئوشیمی سیالات درگیر در ارتباط با کانسارسازی مولیبدن در معدن مس سرچشمه و کاربرد آن در بازیابی مؤثر مولیبدن"، پایان نامه کارشناسی ارشد زمین شناسی اقتصادی، دانشگاه شهید باهنر کرمان (1385) 112ص.
[32] Arribas A. Jr., “Characteristics of high sulfidation epithermal deposits and their relation to magmatic fluids”, Mineralogical Association of Canada Short Course Series 23 (1995) 419-454.
[33] Bissig T., Clark A. H., Lee J. K. W., Hodgson, C. J. B., “Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio- Pascua Au-Ag-Cu belt, Chile and Argentina”, Economic Geology 79 (2002) 971-996.
[34] Wood S. A., “The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure”, Chemical Geology 88 (1990) 99-125.
[35] Haas J. R., Shock E. L., Sassani D. C., “Rare earth elements in hydrothermal systems:estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures”, Geochimica et Cosmochimica Acta 59 (1995) 4329-4350.
[36] Bache W., Peucher-Ehrenbrink ., Hart S. R., Blusztajn J. S., “Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B-
‌Implications for seawater-crust exchange budgets and Sr and Pb isotopic evolution of the mantel”, Geochem. Geophys. Geosys. 4(3) (2003) 8904.
[37] Lottermoser B. G., “Rare earth elements and hydrothermal ore formation processes”, Ore Geology Reviews 7 (1992) 25-41.
[38] Kirschbaum A., Martinez E., Pettinari G., Herrero S., “Weathering profiles in granites, Sierra Norte (Cardoba, Argentina)”, Journal of
south American Earth Sciences 19 (2005) 479-493.
[39] مکی زاده م.ع.، تقی پور ب.، "زمین شناسی، ژئوشیمی و بررسی رفتار عناصر نادر و نادر خاکی در دگرسانی های گرمابی کوهستان کرکس، شمال اصفهان"، مجله پترولوژی، شماره 8 (1390) ص 55-68.
CAPTCHA Image