Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, eastern Iran

Document Type : Research Article

Authors

1 Ferdowsi University of Mashhad

2 Aveiro

Abstract

West directed subduction zones show common characteristics, such as low structural elevation, deep trench, steep slab and a conjugate back-arc basin that are opposite to those of the east directed subduction zones. The tectonomagmatic and metallogenic setting of the Lut Block is still a matter of debate and several hypotheses have been put forward. Despite some authors denying the influence of the operation of Benioff planes, the majority propose that it occurred beneath the Afghan Block, while others consider that oceanic lithosphere was dragged under the Lut Block. Cu-Au porphyry deposits seem to occur in an island arc geotectonic setting during the middle Eocene while Mo-bearing deposits are coincident with the crustal thickening during Oligocene. We introduce new trace element and isotope geochemical data for granitoids and structural evidences testifying the two-sided asymmetric subduction beneath both Afghan and Lut Blocks, with different rates of consumption of oceanic lithosphere.

Keywords


[1] Stocklin J. Structural history and tectonics of Iran: A review-Amer. Ass. Petrol. Geol. Bull. 52 (1968) 1229-1258.
[2] Berberian M., King G.C. "Towards a paleogeography and tectonic evolution of Iran". Canadian Journal of Earth Sciences. 18 (1981) 210–265.
[3] Nabavi M.H. An introduction to the geology of Iran. Geological Survey of Iran. (1976) 109 p.
[4] Tarkian M., Lotfi M., Baumann A. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran, Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran. 51 (1983) 357-383.
[5] Jung D., Keller J., Khorasani R., Marcks Chr., Baumann A., Horn P. Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran, Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran. 51 (1983) 285-336.
[6] Samani B., Ashtari Sh. Geological evolution of Sistan and Baluchestan area. Journal of earth sciences. Geological Survey of Iran. No4 (1992).
[7] Saccani E., Delavari M., Beccaluva L., Amini S.A. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos. (2010) Accepted Paper.
[8] Eftekharnejad J. Tectonic division of Iran with respect to sedimentary basins. Journal of Iranian Petroleum Society. 82 (1981) 19–28 (in Persian).
[9] Berberian M. Continental deformation on the Iranian Plateau, G.S.I.. No. 52 (1983).
[10] Tirrul R., Bell I.R., Griffis R.J., Camp V.E. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin. 94 (1983) 134-150.
[11] Doglioni C., Tonarini S., Innocenti , F. Mantle wedge asymmetries and geochemical signatures along W- and E–NE directed subduction zones. Lithos. 113 (2009) 179–189
[12] Arjmandzadeh R., Karimpour M.H., Mazaheri S.A., Santos J.F., Medina J.M., Homam S.M. Two sided asymmetric subduction: new hypothesis for the tectonomagmatic and metallogenic setting of the Lut Block, Eastern Iran. 1st Symposium of Society of Economic Geology of Iran, Ferdowsi University of Mashhad. (2010).
[13] Berberian M. Active faulting and tectonics of Iran, in Gupta, H. K., and Delany, F. M., editors, Zagros-Hindu Kush-Himalaya Geodynamic Evolution: American Geophysical Union Geodynamic Series. v. 3 (1981) 33–69.
[14] Jackson J., McKenzie D. Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan: Geophysical Journal of the Royal Astronomical Society, v. 77 (1984) 185–264.
[15] Lindenberg H.G., Gro¨ler K., Jacobshagen V., Ibbeken H. Post-Paleozoic stratigraphy, structure and orogenetic evolution of the southern Sabzevar zone and the Taknar block: Neues Jahrbuch für Geologie und Pala¨ontologie, Abhhandlungen, v. 168 (1984) 287–326.
[16] Haghipour A., Aghanabati A. Geological Map of Iran (2nd edition): Tehran, Geological Survey of Iran, scale 1:2,500,000 (1989).
[17] Alavi M. Tectonic map of the Middle East: Tehran, Geological Survey of Iran, scale 1:5,000,000 (1991).
[18] Isacks B.L., Barazangi M. Geometry of Benioff zones: lateral segmentation and downward bending of the subducted lithosphere. In: Talwani, M., Pitman, W.M. III_Eds.., Island Arcs, Deep Sea Trenches and Back-arc Basins. AGU, Maurice Ewing Series 1 (1977) 99–114.
[19] Doglioni C., Carminati E., Cuffaro M., Scrocca, D. Subduction kinematics and dynamic constraints. Earth Science Reviews. 83 (1977) 125–175. doi:10.1016/j. earscirev.2007.04.001.
[20] Conder, J.A., Wiens D.A. Seismic structure beneath the Tonga arc and Lau backarc basin determined from joint Vp, Vp/Vs tomography. Geochemistry, Geophysics, and Geosystems 7, Q03018. (2006).
[21] Heit B. Teleseismic tomographic images of the Central Andes at 21°S and 25.5°S. FU Berlin, Digitale Dissertation, http://www.diss.fu-berlin.de/2005/319/. (2005).
[22] Tatsumi Y., Eggins S. Subduction Zone Magmatism. Blackwell Science, Cambridge, U.K. (1995) 211 pp.
[23] Peccerillo A., Taylor S.R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology. 58 (1976) 63-81.
[24] Pearce J.A., Harris , N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. 25 (1984) 956–983.
[25] McDonough W.F., Frey F.A. Rare earth elements in upper mantle rocks. Mineralogical Society of America. Reviews in Mineralogy. (1989).
[26] Wilson M. Igneous Petrogenesis: A Global Tectonic Approach. Harper Collins Academic. (1989) 466 p.
[27] Martin H. The adakitic magmas: modern analogues of Archaean granitoids. Lithos. 46 (1999) 411–429.
[28] Walker J.A., Patino, L.C., Carr, M.J., Feigenson, M.D. Slab control over HFSE depletions in central Nicaragua. Earth Planet. Sci. Lett. 192 (2001) 533–543.
[29] Lan C.Y., Jahn B.M., Mertzman S.A., Wu, T.W. Subduction-related granitic rocks of Taiwan. Journal Southeast Asian Earth Science. 14 (1996) 11– 28.
[30] Kepezhinskas P.K., McDermott F., Defant M.J., Hochstaedter F.G., Drummond M.S., Hawkesworth C.J., Koloskov A., Maury R.C., Bellon H. Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta. 61 (1997) 577–600.
[31] Castillo P.R., Janney P.E., Solidum R.U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting: Contributions to Mineralogy and Petrology. v. 134 (1999) 33–51.
[32] Defant M.J., Drummond M.S.,. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature. 347 (1990) 662 –665.
[33] Grove T.L., Chatterjee N., Parman S.W., Medard E. The influence of H2O on mantle wedge melting: Earth and Planetary Science Letters. 249 (2006) p. 74–89.
[34] Macpherson C.G., Dreher S.T., Thirlwall M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines: Earth and Planetary Science Letters. 243 ( 2006) p. 581–593.
[35] Stern R.A., Hanson G.N. Archean high-Mg granodiorite: a derivative of light rare earth element enriched monzodiorite of mantle origin. Journal of Petrology. 32 (1991) 201–238.
[36] Wang Q., McDermott F., Xu J.F., Bellon H., Zhu Y.T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology. 33 (2005) 465–468.
[37] Guo F., Fan W.M., Li C.W. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geological Magazine. 143 (2006) 1–13.
[38] Lai S.C., Qin J.F., Li Y.F. Partial melting of thickened Tibetean Crust: geochemical evidence from Cenozoic adakitic volcanic rocks. International Geological Review. 49 ( 2007) 357–373.
[39] Liu S., Hu R.Z., Feng C.X., Zou H.B., Li C., Chi X.G., Peng J.T., Zhong H., Qi L., Qi Y.Q., Wang T. Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts. Geological Magazine. 145 (4) (2008a) 463–474.
[40] Liu S., Hu R.Z., Gao S., Feng C.X., Qi Y.Q., WangT., Feng G.Y., Coulson, I.M. U–Pb zircon age, geochemical and Sr–Nd–Pb–Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos. 106 (2008b) 365–379.
[41] Martin H. Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas: Geology. 14 (1986) p. 753–756.
[42] Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology. 36 (1995) 891–931.
[43] Liu Y.S., Gao S., Kelemen P.B., Xu W.L. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta. 72 ( 2008) 2349–2376.
[44] Foley S., Tiepolo M., Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature. 417 (2002) 837–840.
[45] Ionov D.A., Hofmann A.W. Na–Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet. Sci. Lett. 131 (1995) 341– 356.
[46] Prouteau G., Scaillet B., Pichavant M., Maury R. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature. 410 (2001) 197–200.
[47] Alirezaei S., Arjmandzadeh R. Mivehrood adakitic porphyry, NW Iran; Tectonic and economic implications. Congress of GAC-MAC; Annual meeting, Montreal (2006).
[48] Aftabi A., Atapour H. Regional aspects of shoshonitic volcanism in Iran. Episodes. 23 (2000) no. 2, 119-125.
[49] Shahabpour J. Economic Geology. Publication of Shahid Bahonar University of Kerman. (2001) 543p.
[50] Karimpour M.H., Stern C.R. Advanced spaceborne thermal emission and reflection radiometer mineral mapping to discriminate high sulfidation, reduced intrusion related and iron oxide gold deposits, Eastern Iran. Journal of Applied Sciences. 9 (5) (2009) 815-828.
[51] Sengör A.M.C., Altlner D., Cin, A., Ustaomer T., Hsu K.J. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land, In: Audley-Charles, M.G., Hallam, A.E. (Eds.), Gondwana and Tethys. Geological Society of London Special Publication, Blackwell, Oxford. (1988) 119-181.
[52] Camp V.E., Griffis R.J. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos. 15 (1982) 221-239.
[53] Berberian M., Yeats R.S. Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the society of America. 89 (1999) 120-139.
[54] Malekzadeh A. Geology, mineralization, alteration, geochemistry, microthermometry, isotope studies and determining the mineralization source of Khoopic and Maherabad exploration areas. Ph.D thesis. Ferdowsi University of Mashhad. (2009).
[55] Sengör A.M.C., Natalin B.A. Paleotectonics of Asia: fragment of a synthesis. In: An Y, Harrison TM (eds) The tectonic evolution of Asia. Cambridge Univ. Press, Cambridge. (1996) pp 486–640.
CAPTCHA Image