Geothermobarometry of Fe-Ti hosted gabbroid rocks in the Dar Gaz district (Kahnouj Ophiolitic Complex)

Document Type : Research Article

Authors

1 Assistant Professor, Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran

2 M.Sc., Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran

Abstract

Introduction
The Kahnouj Fe-Ti ore district is located 25 km southeast of Kahnouj city associated with the large gabbro intrusion of the Kahnouj ophiolitic complex. This ophiolite is one of the largest ophiolite assemblages of Iran (SE Iran), and part of neo-tethyan ophiolites (Kananian et al., 2001; Ghasemi Siani et al., 2021b). The Dar Gaz district is located in the middle part of Kahnouj ophiolitic complex and it is classified as the main ortomagmatic Fe-Ti ore mineralization. Although the geothermobarometric of iron-titanium oxide minerals in the Dar Gaz district has been studied by Karimi Shahraki et al. (2019), the geothermometry of silicate minerals (especially ferromagnesian) in the Dar Gaz gabrroic rocks has not been performed. Therefore, the main aim of this study is to determine the crystallization temperature and replacement of gabbroic rocks hosting Fe-Ti mineralization of the Dar Gaz district, using geothermometry of ferromagnesian silicate mineral.
 
Material and methods
A total of 100 thin-polish sections from different parts of the mining area were prepared and studied at the Iran Mineral Processing Research Center (IMPRC) and the Kharazmi University of Tehran with a Zeiss Axioplan 2 microscope. In order to achieve the temperature conditions of gabbroic rocks formation, 64 points (20 points of olivine, 13 points of clinopyroxene, 3 points of orthopyroxene, 14 points of plagioclase and 14 points of amphibole) from ferrogabbro to coarse-grained pyroxene-hornblende gabbro, 42 points (11 points of olivine, 10 points 
of clinopyroxene, 1 point of orthopyroxene, 8 points of plagioclase and 12 points of amphibole) from pyroxene-hornblende to fine-grained olivine gabbro, 30 points (12 points of clinopyroxene, 10 points of plagioclase, 8 points of amphibole) from fine-grained hornblende gabbro and 20 points (3 points of clinopyroxene, 11 points of plagioclase and 5 points of amphibole) from the diabasic dike of the Dar Gaz district were analyzed using CAMECA SX 100 electron microscopy (EPMA) with 20 kV and 20 nA conditions in the IMPRC.
 
Discussion
The mafic rocks of the Dar Gaz district include ferrogabbro to coarse-grained pyroxene-hornblende gabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes. Ferrogabbro to coarse-grained pyroxene-hornblende gabbro is one of the most important host rocks for Fe-Ti mineralization in the district.
According to the thermo-barometers, the formation temperature and pressure of gabbroic rocks in the Dar Gaz district are in the range of 750 to 1258°C and a pressure of 2.5 and 6 kbars (clinopyroxene and amphibole barometers), and dibasic dikes are in the range of 700 to 1145°C and a pressure of 2.5 and 6 kbars were obtained. The highest crystallization temperature related to fine-grained pyroxen-hornblende gabbro unit (754 to 1258 °C) is the base of the sequence.
The ascending of asthenosphere in the back-arc tectonic settings are from a magmatic chamber with a depth of about 15.34 to 21.20 km, and a pressure of about 4 to 8 kbars upwards. The average geometric results of pyroxene-ilmenite mineral pair geothermometry and pyroxene geothermometer of these rocks, their equilibrium temperature was determined between 901 to 1228°C, which is close to the magmatic temperatures.
With comparison of temperature (700 to 1258°C), pressure (4 to 8 kbars) and oxygen fugacity (-19.25 to -25.25 bars) obtained for gabbroid rocks hosting Fe-Ti oxide mineralization with the temperatures obtained from ilmenite and titanomagnetite by Karimi Shahraki et al. (2019), it can be concluded that oxide mineralization is classified as orthomagmatic and occurs during the replacement, cooling and fraction of basic magma and formation of gabbroid intrusion associated with fractional crystallization.
 
Conclusion
Thermometry of pyroxenes at 2.5 kbars pressure indicates a temperature of 750 to 1258 °C for gabbroid bodies and 700 to 1145 °C for diabaic dikes. Thermometry of plagioclase and hornblende-plagioclase at 6 kbars pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 868, 884, 776 and 784 °C, respectively. Amphibole thermometers at 6 kbar pressure for coarse-grained ferrogabbro, fine-grained pyroxene-hornblende gabbro, hornblende gabbro and diabasic dikes are 911, 948, 937 and 946°C, respectively. Comparison of temperature, pressure and high oxygen fugacity values obtained for gabbroic rocks and ilmenite and titanium magnetite ores of the Dar Gaz district, indicating oxidation conditions associated with fractional crystallization is the main factor for control of orthomagmatic mineralization in the back-arc environment.

Keywords


Abd El-Rahman, Y., Helmy, H.M., Shibata, T., Yoshikawa, M., Arai, S. and Tamura, A., 2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma. Lithos, 155: 410–425. https://doi.org/10.1016/j.lithos.2012.09.015
Aoki, K.I. and Shiba, I., 1993. Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6(1): 41–51.  https://doi.org/10.1016/0024-4937(73)90078­_9
Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Transaction of the Royal Society of Edinburg: Earth Sciences, 87(1–2): 125–138.
Anderson, J.L. and Smith, D.R., 1995. The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. American Mineralogist, 80 (5–6): 549–559. https://doi.org/10.2138/am.1995-5-615
Arvin, M., Babaei, A. A., Ghadami, Gh., Dargahi, S. and Shakerardekani, A.R., 2005. The origin of theKahnuj ophiolitic complex, SE of Iran, Constraints from whole rock and mineral chemistry of theBande-Zeyarat gabbroic complex. Ofioliti, 30 (1): 1–14.
Barbero, E., Delavari, M., Dolati, A., Vahedi, L., Langone, A., Marroni, M. and Saccani, E., 2020. Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data. Minerals, 10(12): 1100. https://doi.org/10.3390/min10121100    ‏ 
Barclay, J. and Carmichael, I.S.E., 2004. A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure–temperature window of eruptibility. Journal of Petrology, 45(3): 485–506.‏ https://doi.org/10.1093/petrology/egg091
Beccaluva, L., Bianchini, G., Bonadiman, C., Siena, F. and Vaccaro, C., 2004. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos, 75(1-2): 67–87.  https://doi.org/10.1016/j.lithos.2003.12.015
Bertrand, P. and Mercier, J.C., 1985. The mutual solubility of coexisting ortho- and Clinopyroxene: toward and absolute geothermometry for natural system? Earth and Planetary Science Letters, 76(1–2): 109–122. https://doi.org/10.1016/0012-821X(85)earpscilett.90152-9
Bishop, F.C., 1980. The distribution of Fe2+ and Mg between coexisting illmenite and pyroxene with application to geothermometry. American Journal of Sciences, 280(1): 46–77. https://doi.org/10.2475/ajs.280.1.46
Blundy, J.D., and Holland, T.J., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208–224. https://doi.org/10.1007/BF00306444
Burg, J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews, 185, 1210–1231.‏ https://doi.org/10.1016/j.earscirev.2018.09.011
Burg, J.P., Dolati, A., Bernoulli, D. and Smit, J., 2013. Structural style of the Makran Tertiary accretionary complex in SE-Iran. In: K. H. Al hosani, F. Roure, and R. Ellison (Editors), Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues. Springer, Berlin, pp. 239–259. https://doi.org/10.1007/978-3-642-30609-9_12
Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1–2): 68–84. https://doi.org/10.1016/j.lithos.2007.05.009
Deer, W.A., Howie, R.A. and Zussman, J., 2013. An introduction to the rock forming minerals. Longman Scientific and Technical, London, 506 pp.
Desmons, J. and Beccaluva, L., 1983. Mid-ocean ridge and island-arc affinities in ophiolites from Iran: palaeographic implications: complementary reference. Chemical Geology, 39(1–2): 39–63. https://doi.org/10.1016/0009-2541(83)90071_2
‏Dorani, M., Arvin, M., Oberhänsli, R. and Dargahi, S., 2017. PT evolution of metapelites from the Bajgan complex in the Makran accretionary prism, south eastern Iran. Geochemistry, 77(3): 459–475.‏ https://doi.org/10.1016/j.chemer.2017.07.004
Elthon, D., Stewart, M., and Ross, D.K., 1992. Compositional trends of minerals in oceanic cumulates. Journal of Geophysical Research: Solid Earth, 97(B11): 15189–15199.‏ https://doi.org/10.1029/92JB01187
Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K., 1993. Al– Fe3+ and F– OH substitutions in titanite and constrains on their P–T dependence. European Journal of Mineralogy, 5(2): 231–291. https://doi.org/10.1127/ejm.5.2.0219
Ernst, W.G. and Liu, J., 1998. Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB—A semiquantitative thermobarometer. American mineralogist, 83(9–10): 952–969. https://doi.org/10.2138/am-1998-9-1004
Esmaeili, R., Xiao, W., Ebrahimi, M., Zhang, J.E., Zhang, Z., Abd El-Rahman, Y. and Aouizerat, A., 2020. Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. International Geology Review, 62(13–14): 1677–1697. https://doi.org/10.1080/00206814.2019.1658232
Ewart, A., 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6: 13–121. https://doi.org/10.1016/B978-0-444-41765-7.50007-1
Fanka, A., Tsunogae, T., Daorerk, V., Tsutsumi, Y., Takamura, Y., Endo, T. and Sutthirat, C., 2016. Petrochemistry and mineral chemistry of Late Permian hornblendite and hornblende gabbro from the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: indication of Palaeo-Tethyan subduction. Journal of Asian Earth Sciences, 130: 239–255. https://doi.org/10.1016/j.jseaes.2016.11.018
Fischer, T.P. and Marty, B., 2005. Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. Journal of Volcanology and Geothermal Research, 140(1–3): 205–216. https://doi.org/10.1016/j.jvolgeores.2004.07.022
Furhman, M.L. and Lindsley, D.H., 1988. Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3–4): 201–215.‏ Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/73/3-4/201/42101/Ternary-feldspar-modeling-and-thermometry?redirectedFrom=PDF
Ghadami, Gh., 1998. Petrology and geochemistry of the Kahnuj ophiolitic gabbroid rocks. M.Sc.Thesis, Shahid Bahonar University, Kerman, Iran, 145 pp. (in Persian)
Ghasemi Siani, M., Mehrabi B., Karimi Shahraki B. and Kheirabadi A., 2018. Geology, petrography and geochemistry of ultramafic-mafic rocks and associated mineralization at Dargaz anomaly (Kahnuj OphioliticComplex). Petrology, 34(9): 139-162. (in Persian) http://dx.doi.org/10.22108/ijp.2018.111638.1089
Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Cao, S., 2021a. Trace element geochemistry of zircons from the Kahnouj ophiolite complex: implications for petrogenesis and geodynamic setting. Arabian Journal of Geosciences, 14(14): 1–20. https://doi.org/10.1007/s12517-021-07575-5
Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Cao, S. and Lentz, D.R., 2021b. Geochronology, geochemistry, and origin of plagiogranitic rocks and related granitic dikes in the Dar Gaz district, Kahnuj ophiolite complex, SE Iran: Analysis of their petrogenesis in a back-arc tectonic setting. Lithos, 380: 105832. https://doi.org/10.1016/j.lithos.2020.105832
Ghazi A.M., Hassanipak A.A., Mahoney J.J. and Duncan R.A., 2004. Geochemical characteristics, 40Ar- 39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics, 393(1–4): 175–196. https://doi.org/10.1016/j.tecto.2004.07.035
Ghent, E.D., Nicholls, J., Simony, P.S., Sevigny, J. H. and Stout, M.Z., 1991. Hornblende geobarometry of the Nelson Batholith, southeastern British Columbia: tectonic implications. Canadian Journal of Earth Sciences, 28(12): 1982–1991. https://doi.org/10.1139/e91-180
Giacomini, F., Tiepolo, M., Dallai, L. and Ghezzo, C., 2007. On the onset and evolution of the Ross-orogeny magmatism in North Victoria Land-Antarctica. Chemical Geology, 240(1–2): 103–128.‏ https://doi.org/10.1016/j.chemgeo.2007.02.005 
Hammarstrom, J.M. and Zen, E.A., 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71(11–12): 1297–1313.‏ Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/71/11-12/1297/104900/Aluminum-in-hornblende-An-empirical-igneous?redirectedFrom=fulltext
Hassanipak, A.A., Ghazi, A.M. and Wampler, J.M., 1996. Rare earth element characteristics and K- Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Canadian Journal of Earth Sciences, 33(11): 1534–1542. https://doi.org/10.1139/e96-116
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97(11–12): 2031–2048.‏ https://doi.org/10.2138/am.2012.4276
Hebert, R., 1982. Petrography and mineralogy of oceanic peridotites and gabbros: some comparisons with ophiolite examples. Ofioliti, 7(2–3): 299–324. Retrieved October 10, 2021 from https://pascal-francis.inist.fr
Hebert, R., Constantin, M. and Robinson, P.T., 1991. Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. In: Proceeding of the ocean Drilling Program. Scientific Results, 118: 3–20.‏ Retrieved October 10, 2021 from http://www-odp.tamu.edu/publications/118_SR/VOLUME/CHAPTERS/sr118_01.pdf
Holland, T. and Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on
amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116: 433–447. https://doi.org/10.1007/BF00310910
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H. H. and Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3–4): 231–239.‏ Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/72/3-4/231/104937/confirmation-of-the-empirical-correlation-of-al-in
Hossain, I., Tsunogae, T. and Rajesh, H.M., 2009. Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate. Journal of Asian Earth Sciences, 34(6): 731–739. https://doi.org/10.1016/j.jseaes.2008.10.010
Huaimin X., Shuwen D., Ping, J., 2006. Mineral chemistry’ geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen sci-ence in China", Earth Sciences, 49: 684–695. https://doi.org/10.1007/s11430-006-0684-y
Humphreys, M.C., Cooper, G. F., Zhang, J., Loewen, M., Kent, A.J., Macpherson, C.G. and Davidson, J.P. 2019. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contributions to Mineralogy and Petrology, 174(1): 1–15. https://doi.org/10.1007/s00410-018-1543-5
Hunziker, D., 2014. Magmatic and metamorphic history of the North Makran ophiolites and blueschists (SE Iran): Influence of Fe3+/Fe2+ ratios in blueschist facies minerals on geothermobarometric calculations. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 384 pp.
Hunziker, D., Burg, J.P., Bouilhol, P. and von Quadt, A., 2015. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics, 34(3): 571–593.‏ https://doi.org/10.1002/2014TC003768
Hynes, A., 1982. A comparison of amphiboles from medium- and  low- pressure metabasites. Contributions to Mineralogy and Petrology, 81(2): 119–125. https://doi.org/10.1007/BF00372049
Jacamon, F. and Larsen, R.B., 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3–4): 281–291. https://doi.org/10.1016/j.lithos.2008.10.016
Johnson, M.C. and Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Kananian A., 2001. Petrology and geochemistry of Kahnuj ophiolite complex. Ph.D. thesis, Tarbiat Modares University, Tehran, Iran, 241 p (in Persian).
Kananian A., Juteau T., Bellon H., Darvishzadeh A., Sabzehi M., Whitechurch H. and Ricou L. E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran). new geological and geochronological data. Sciences de la Terre et des planètes/Earth and Planetary Sciences, 332(9):543–552. https://doi.org/10.1016/S1251-8050(01)01574-9
Karimi Shahraki, B., Ghasemi Siani, M. and Gholizadeh K., 2019. Geothermometry and oxygen fugacity of iron-titanium oxide minerals in Dargaz anomaly, southeast of Kahnuj. Kharazmi Earth Sciences, 5(1): 79–98 (in Persian). Retrieved October 10, 2021 from https://doi.org/10.29252/gnf.5.1.79
Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. and Hacker, B. R., 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophysical Monograph-American Geophysical Union, 138, 293–311. https://doi.org/10.1029/138GM13
Kelemen, P., Whitehead J. A., Aharonov E. and Joordahl K. A., 1995. Experiments on flow focusingin soluble porous media, with applications to melt extraction from the mantle. Journal of GeophysicsResearch, 100(B1): 475–496. https://doi.org/10.1029/94JB02544
Kretz, R., 1994. Metamorphic crystallization. John Wiley and Sons Ltd, New York, USA, 507 pp. Retrieved October 10, 2021 from https://www.academia.edu
Lindsley, D.H., 1983. Pyroxene thermometry. American Mineralogist, 68: 477–493. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/68/5-6/477/104808/Pyroxene-thermometry
Locock, A. J., 2014. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers and Geosciences, 62: 1–11. https://doi.org/10.1016/j.cageo.2013.09.011
Mandal, A., Ray, A., Debnath, M. and Paul, S. P., 2012. Petrology, geochemistry of hornblende gabbro and associated dolerite dike of Paharpur, Puruliya, West Bengal: Implication for petrogenetic process and tectonic setting. Journal of Earth System Science, 121(3): 793–812.‏ https://doi.org/10.1007/s12040-012-0195-5
McCall, G. J. H., 1985. Explanatory text of the Minab quadrangle map 1:250000. Geological Survey of Iran, Report No. J13. (in Persian)
McCall, G. J. H., 1997. The geotectonic history of the Makran and adjacent areas of the southern Iran.Journal of Asian Earth Sciences, 15(6): 517–531. https://doi.org/10.1016/S0743-9547(97)00032-9
McCall, G. J. H. and Kidd, R. G. W., 1982. The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. Geological Society, London, Special Publications, 10(1): 387–397. https://doi.org/10.1144/GSL.SP.1982.010.01.26
Meurer, W. P., and Claeson, D. T., 2002. Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. Journal of Petrology, 43(4): 607–629. https://doi.org/10.1093/petrology/43.4.607
Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C. and Fershtater, G. B., 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232: 286–305.‏ https://doi.org/10.1016/j.lithos.2015.06.027
Molina, J. F., Scarrow, J. H., Montero, P. G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158(1): 69–98.‏ https://doi.org/10.1007/s00410-008-0371-4
Morimoto, N., 1988. Nomenclature of pyroxenes. Canadian Mineralogist, 27: 143–156. https://doi.org/10.1007/BF01226262
Moslempour, M. E., Khalatbari-Jafari, M., Ghaderi, M., Yousefi, H. and Shahdadi, S., 2015. Petrology, geochemistry and tectonics of the extrusive sequence of Fannuj-Maskutan ophiolite, Southeastern Iran. Journal of the Geological Society of India, 85(5): 604–618.‏ https://doi.org/10.1007/s12594-015-0255-y
Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321
 
‏Mutch, E. J. F., Blundy, J. D., Tattitch, B.C., Cooper, F. J. and Brooker, R. A., 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(10): 1–27.  https://doi.org/10.1007/s00410-016-1298-9
Nekvasil, H., 1992. Ternary feldspar crystallization in high-temperature felsic magmas. American Mineralogist, 77(5–6): 592–604. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/77/5-6/592/42680/Ternary-feldspar-crystallization-in-high?redirectedFrom=PDF
Nisbet, E.G. and Pearce, J.A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149–160. https://doi.org/10.1007/BF00398776
Paragon-Contech Consulting Engineers, 1985. Explanatory text of Minab Map 1:250000. Geological survey of Iran. (in Persian)
Pearce, J.A., Lipart, S.J. and Roberts, S., 1984. Characteristic and tectonic setting of Supra-Subduction zone ophiolites. Geological Society Special Publication (London), 16: 77–94. https://doi.org/10.1144/GSL.SP.1984.016.01.06
Petrini, K. and Podladchikov, Y., 2000. Lithospheric pressure-depth relationship in compressive regions of thickened crust. Journal of Metamorphic Geology, 18(1): 67–77.‏ https://doi.org/10.1046/j.1525-1314.2000.00240.x
Putirka, K.D., 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4): 841–858.   https://doi.org/10.2138/am-2016-5506
Rajabzadeh, M.A., Ghorbani M and Saadati M., 2011. Mineralization study of titanium in Kahnouj ophiolitic complex based on petrological, mineralogical and geochemical data, south of Kerman province. Petrology, 7(2): 21–38 (in Persian). Retrieved October 10, from https://ijp.ui.ac.ir/article_16078.html?lang=en
Rampone, E., Hofmann, A.W. and Raczek, I., 1998. Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth and Planetary Science Letters, 163(1–4):175–189.‏ https://doi.org/10.1016/S0012-821X(98)00185-X
Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515–1533.‏ https://doi.org/10.2113/gsecongeo.98.8.1515
Ridolfi, F. and Renzulli, A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5): 877–895. https://doi.org/10.1007/s00410-011-0704-6
Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc- alkaline magmas: an overview, new thermobarometric formulations and application to subduction – related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7
Saccani, E., Dilek, Y. and Photiades, A., 2018. Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere, 10(1): 35–53. https://doi.org/10.1130/L602.1
Sepidbar, F., Lucci, F., Biabangard, H., Zaki Khedr, M. and Jiantang, P., 2020. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). International Geology Review, 62(16): 2077–2104.‏ https://doi.org/10.1080/00206814.2020.1753118
Scaillet, B. and Evans, B.W., 1999. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–f O2–f H2O conditions of the dacite magma. Journal of Petrology, 40(3): 381–411. https://doi.org/10.1093/petroj/40.3.381
Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304–310. https://doi.org/10.1007/BF00310745
Shafaii Moghadam, H. and Stern, R.J., 2015. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites. Journal of Asian Earth Sciences, 100: 31–59.‏ https://doi.org/10.1016/j.jseaes.2014.12.016
Simakin, A., Zakrevskaya, O. and Salova, T., 2012. Novel amphibole geo-barometer with application to mafic xenoliths. Earth Science Research, 1(2): 82 –97. http://dx.doi.org/10.5539/esr.v1n2p82
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations. Geological Society of Sweden (Geologiska Foreningen), 119(1): 55–60. https://doi.org/10.1080/11035899709546454
‏Stein, E., and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1–3): 185–207.‏ https://doi.org/10.1007/s007100170033
Tamayo, Jr, R.A., 1998. Petrology and mineral chemistry of a back-arc upper mantle suite: Example from the Camarines Norte Ophiolite complex, South Luzon. Journal of the Geological Society of the Philippines, 51: 1–23.‏
Vyhnal, C.R., McSween, H.Y. and Speer, J.A., 1991. Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76(1–2):176–188‏. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/76/1-2/176/42488/Hornblende-chemistry-in-southern-Appalachian?redirectedFrom=fulltext
Wallace, P. J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140(1–3): 217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023
Wan, B., Xiao, W., Windley, B.F. and Yuan, C., 2013. Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. Lithosphere, 5(3): 290–299. https://doi.org/10.1130/L261.1
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wones, D.‌R., 1981. Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31(168): 191–212‏. https://doi.org/10.11456/shigenchishitsu1951.31.191
Wones, D.R., 1989. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks. American Mineralogist, 74(7–8): 744–749. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org/msa/ammin/article-abstract/74/7-8/744/42272/Significance-of-the-assemblage-titanite-magnetite
Xie, Y.W. and Zhang Y.Q., 1990. Peculiarities and genetic significance of hornblende from granite in the Hengduansan region. Acta Mineral Sin, 10: 35–45. Retrieved Ocober 10, 2021 from https://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199001005.htm
Yan, S. and Niu, H,C., 2014. Petrography and geochemistry of the Wuling amphibole gabbro and its implication for iron ore metallization. Acta Geologica Sinica‐English Edition, 2(88): 397–398. https://doi.org/10.1111/1755-6724.12372_25
Yan, S., Shan, Q., Niu, H.C., Yang, W.B., Li, N.B., Zeng, L.J. and Jiang, Y.H., 2015. Petrology and geochemistry of late Carboniferous hornblende gabbro from the Awulale Mountains, western Tianshan (NW China): Implication for an arc–nascent back-arc environment. Journal of Asian Earth Sciences, 113: 218–237.  https://doi.org/10.1016/j.jseaes.2015.01.016
Yang, D.G., Sun, D.Y., Gou, J. and Hou, X.G., 2018. Petrogenesis and tectonic setting of Carboniferous hornblende gabbros of the northern Great Xing'an Range, NE China: Constraints from geochronology, geochemistry, mineral chemistry, and zircon Hf isotopes. Geological Journal, 53(5): 2084–2098.‏ https://doi.org/10.1002/gj.3035
Yavaz, F. and Döner, Z., 2017. WinAmptb: A Windows program for calcific amphibole thermobarometry. Periodico di Mineralogia, 86(2): 135–167. https://doi.org/10.2451/2017PM710 
Yoder, H.S. and Tilley, C.E., 1962. Origin of Basaltic Magma: an experimental Study of Natural and synthetic rocks systems. Journal of Petrology, 3(3): 342–532. https://doi.org/10.1093/petrology/3.3.342
Zhang, S.H., Zhao, Y. and Song, B., 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: implications for the tectonic evolution of the northern margin of North China block. Mineralogy and Petrology, 87(1): 123–141. https://doi.org/10.1007/s00710-005-0116-2
 
CAPTCHA Image