Disseminated, veinlet and vein Pb-Zn, Cu and Sb polymetallic mineralization in the GaleChah-Shurab mining district, Iranian East Magmatic Assemblage (IEMA)

Document Type : Research Article

Authors

1 Kharazmi University

2 Bu-Ali Sina

3 Science and Research Branch, Islamic Azad University

Abstract

The Iranian East Magmatic Assemblage (IEMA) in the Central Lut region, hosted porphyry and vein-type polymetallic mineralization. The GaleChah-Shurab mining district is located in NW of the IEMA. Volcanic and subvolcanic bodies in the area are composed of calc-alkaline porphyry quartz-latite, porphyry dacite and rhyodacite and hornblende-biotite andesite, equivalent to I-type granite. They emplaced in Tertiary and intruded the Jurassic shale, siltstone and limestone basement (Shemshak Fm). The faults, joints and fractures, are the main controls on the mineralization, in forms of disseminated, vein, veinlet and minor stockwork and brecciation type mineralization of Pb, Zn, Cu, Sb and trace elements. Vein and veinlet of Pb+Zn±Cu±Sb in the Gale-Chah abandoned mine accompanied by carbonate and silicic alterations in association with galena, sphalerite, pyrite, chalcopyrite, bournonite and tetrahedrite as the hypogene ore minerals and their supergene products including cerussite, covellite, digenite and second-generation colloidal pyrite. The Pb+Zn+Cu+Sb mineralization associated with sericitic and silicic alterations in the Shurab abandoned mine, is composed of two types of mineralization, veinlet and brecciation vein in the porphyry dacite boundaries with Jurassic shale and sandstones, and the disseminated and disseminated-veinlet mineralization which is hosted by the altered porphyry dacite and rhyodacite intrusive rocks. The mineral assemblages are galena, sphalerite, stibnite, As-bearing pyrite, chalcopyrite and tetrahedrite-tennantite complex hypogene-sulfide ore as a hypogene ore, and malachite, covellite, cerussite and melancoitic pyrite as a sulfide-oxide supergene ore. The Pb+Zn+Sb±As±Ag polymetallic occurrence is associated with sericitic, carbonate and chloritic alteration assemblage in the Chupan occurrence, in two forms, I) vein, veinlet-stockwork (30m depth) confined to fault structures and II) disseminated-replacement (below 70m) mainly hosted in rhyodacite and porphyry dacite rocks. The hypogene minerals are galena, sphalerite, stibnite, pyrite, realgar-orpiment, arsenopyrite, and chalcopyrite with extensive occurrence of oxide-sulfide supergene products, such as Mn-oxide, hematite, malachite and colloidal pyrite. Fluid inclusion study show that disseminated veinlet Cu and disseminated-replacement polymetallic mineralization at the Shurab and Chupan deposits, respectively occurred in the high temperature, salinity and depth compared to vein-veinlet Pb and Zn mineralization of Gale-chah deposit. It seems that the mineralization is related to hydrothermal fluid evolution affected by mixing with cold and low salinity meteoric water.

Keywords


[1] Lotfi M., “Geological and geochemical investigation on the volcanogenic Cu-Pb-Zn-Sb ore mineralization in the Shurab- Gale chah and North West of Khur”. PHD thesis, University of Hamburg, (1982) 152.
[2] Jung D., Keler G., Khorasani R., Marks K., Buman A., and Kuren P., “Petrogenesis of Tertiary magmatic activity in Northern Lut region (East Iran)”, (1983) Geol. Sur. Iran.
[3] Tarkian M., Lotfi M., and Baumann A., “Tectonic, magmatism and the formation of mineral deposits in the central Lut, Eastern Iran”, Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, 51 (1983) 357-383.
[4] Tarkian M., Lotfi M., and Baumann A., “Magmatic Copper and Lead Zinc ore deposits in the Central Lut, Eastern Iran”. N. Jb. Geol. Palaont. Abh. 168 (2/3) (1984) 497-523.
[5] Karimpour M.H., Zaw Kh., and Huston D.L., “S-C-O isotopes, fluid inclusion microthermometry, and the genesis of ore bearing fluids at Qaleh-Zari Fe-Oxide Cu-Au-Ag mine”. Iran. IRI. J. Sci, 16 (2005) 153-168.
[6] شرکت کاوش‌کانسار، "گزارش بررسی کانه‌زایی هیدروترمالی ناحیه شوراب- قلعه‌چاه و تلفیق آنها با نتایج شیمیایی منطقه"، وزارت صنایع و معادن، طرح تحقیقات صنعتی- آموزش و اطلاع‌رسانی، (1385) 278 ص.
[7] شرکت توسعه علوم‌زمین، "گزارش اکتشافات تفصیلی عملیات حفاری در مناطق معدنی شوراب، چوپان و شند‌محمود، در مقیاس 1000/1"، (1385) 350 ص.
[8] نقشه زمین‌شناسی 250000/1 بشرویه، 1349، سازمان زمین‌شناسی کشور.
[9] لطفی م.، "خلاصه‌ای بر مطالعه فاز متالوژنی پیرنه‌ای در رابطه با سنگ‌های ولکانیک، ساب‌ولکانیک بخش شمالی پهنه لوت‌مرکزی"، چهارمین گردهمایی علوم‌زمین، (1374).
[10] رحیمی ه.، "بررسی ژئوشیمیایی، دگرسانی و زمین‌شناسی اقتصادی کانسار آنتیموان شوراب (جنوب خراسان)"، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت معلم تهران، (1383) 210 ص.
[11] نخبه‌الفقهایی ع.، "ژئوشیمی، کانی شناسی و ژنز اندیس‌معدنی آنتیموان- طلای چوپان واقع در شوراب فردوس"، پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی، (1387) 128 ص.
[12] طالع‌فاضل ا.، "بررسی ژئوشیمی، سیالات درگیر و ژنز کانسار پلی متال شوراب (جنوب فردوس)"، پایان نامه کارشناسی ارشد، دانشگاه تربیت معلم تهران، (1388) 180 ص.
[13] درویش‌زاده ع.، "بررسی‌های ژئوشیمیایی آتش‌فشان‌های جوان ایران از دیدگاه تکتونیک صفحه‌ای"، مجموعه مقالات سمپوزیوم انجمن نفت ایران، (1354) ص 36-40.
[14] Pearce J.A., and Can J.R., “Tectonic setting of basic volcanic rocks determined using trace elements analysis”. Earth planet, (1973) 290-300.
[15] لطفی م.، "نقشه زمین‌شناسی 20000/1 گله‌چاه-شوراب"، وزارت صنایع و معادن، طرح تحقیقات صنعتی-آموزش و اطلاع‌رسانی، شرکت کاوش‌کانسار (1385).
[16] نخبه‌الفقهایی ع.، و بهزادی م.، و خاکزاد، ا.، و یزدی، م.، "ژئوشیمی، کانه‌زایی و ژنز کانسار آنتیموان چوپان واقع درخراسان جنوبی"، فصلنامه زمین‌شناسی کاربردی، شماره 1 (1388)، صفحه 76-86.
[17] مهرابی ب. و طالع‌فاضل ا.، "بررسی نقش اختلاط سیالات ماگمایی و جوی در کانه‌زایی کانسار پلی متال شوراب (جنوب فردوس) با استفاده از شواهد ژئوشیمی ایزوتوپی و میکروترمومتری"، مجله بلورشناسی و کانی شناسی ایران، 1390 (در مرحله چاپ).
[18] Brown P.E., “FLINCOR: a microcomputer program for the reduction and investigation of fluid inclusion data”. American Mineralogist, 74 (1989) 1390– 1393.
[19] Roedder E., “Fluid inclusions. Reviews in Mineralogy”, 12 (1984) 644.
[20] Shepherd T.J., Rankin A.H., and Alderton D.H.M., “A Practical Guide to Fluid Inclusion Studies”. Blackie and Son, (1985) 239.
[21] Reed M.H., “Hydrothermal alteration and its relationship to ore fluid composition”. In Geochemistry of hydrothermal ore deposit, Barnes, H.L., (1997) 570.
[22] Wagner T., and Johum, J., “Fluid-interaction processes related to hydrothermal Vein-type mineralization in the Siegerland district, Germany: implications from inorganic and organic alteration patterns”. Applied Geochemistry. 17 (2002) 225-243.
[23] Barnes H.L., “Geochemistry of Hydrothermal Ore Deposits”, John Wiley (1997) 570.
[24] White N.C., and Hedenquist J.W., “Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration”, in Hedenquist, J., White, N.C., and Siddeley, G. eds., Epithermal Gold Mineralization of the Circum-Pacific, Geology, Geochemistry, Origin and Exploration, II. Journal of Geochemical Exploration, 36 (1990) 445-474.
[25] Fifarek R.H., and Rye R.O., “Stable isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: influence of hydrodynamics on SO24-H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments: Geochemistry of sulfate minerals in high and low temperature environments”. Chemical Geology, 215 (2005) 253-279.
[26] Taylor B.E, “Epithermal gold deposits”, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5 (2007) 113-139.
[27] Hedenquist J.W, Izawa E., Arribas A.R., and White N.C., “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. Society of Resource Geology 1 (1996) 70.
[28] Heinrich C.A., Bierlein F.P., Foster D.A., GrayD.R., and Davidson G.J., “The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study”. Mineralium Deposita 39 (2005) 864-889.
[29] Yoo B.C., Lee K.H., and White C.N., “Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold–silver deposit”, Mineralium Deposita, (2009) published online.
[30] Alavi M., “Tectonics of the Zagros orogenic belt of Iran: New data and interpretations”. Tectonophysics, 229 (1994) 211–238.
CAPTCHA Image