Geology, alteration, mineralization and geochemistry at south of Arghash (Neyshabour)

Document Type : Research Article

Authors

Ferdowsi University of Mashhad

Abstract

The Arghash area is located 45 km to southwest of Neyshabour. The subvolcanic rocks in the area consist of biotite hornblende quartz monzodiorite porphyry, hornblende biotite quartz monzodiorite porphyry, hornblende monzonite porphyry, biotite hornblende monzonite porphyry, monzodiorite porphyry and biotite quartz monzodiorite porphyry units. The volcanic rocks consist of hornblende biotite dacite, biotite hornblende dacite, and andesite and pillow lava. The plutonic rocks consist of hornblende monzodiorite, hornblende monzonite, quartz monzonite, hornblende quartz monzodiorite, biotite granodiorite, hornblende granodiorite, biotite hornblende granodiorite, biotite quartz diorite and pyroxene dolerite units. Five types of alteration including propylitic, carbonate, argillic, silicification and sericitic were recognized. Those are subdivided into twelve sub-zones based on the mineral abundances and intensity of alteration. Primary pyrite, 3-4%, is found mainly as disseminated. Secondary mineralization includes limonite, hematite and jarosite. Twenty rock chip and 8 stream sediment samples were collected for geochemical exploration. The samples were analysed for Cu, Zn, Pb, Ag and Sb using Atomic Absorbtion Spectrophotometric (AAS) method. In stream sediment samples, Cu abundance is 34-58 ppm, Zn 45-422 ppm, Pb 28-42 ppm and Ag 2-12 ppm; whereas in rock chip samples, Cu abundance is 8-1137 ppm, Zn 13-411 ppm, Pb 15-97 ppm and Ag 3-32 ppm.

Keywords


[1] کریم پور، م.، "ویژگی های پترولوژیکی و کانه زایی در گرانیتوئیدهای فردوس"، چهاردهمین همایش بلور و کانی (1385).
[2] Berberian, M., King, G. C., “Towards a paleogeography and tectonic evolution of Iran”,
Canadian Journal of Earth Sciences 18, (1981) 210-265.
[3] Hezarkhani, A.,“Hydrothermal evolutions at the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran”: evidence from fluid inclusions, Journal of Asian Earth Sciences, England 28,( 2006a) 408-422.
[4] Hezarkhani, A., “Alteration/mineralization and controls of chalcopyrite
dissolution/deposition in the Raigan porphyry system, Bam-Kerman, Iran”, Journal of International Geology Review, USA 48, (2006b) 561-572.
[5]Hezarkhani, A., “Petrography of intrusive rocks within the sungun porphyry copper deposit, Azarbaijan, Iran”, Journal of Asian Earth Sciences, England 73,( 2006c) 326-340.
[6] Etminan, H, “Fluid inclusion studies of the porphyry copper ore bodies at Sar-Cheshmeh, Darreh Zar and Mieduk (Kerman region, southeastern Iran) and porphyry copper discoveries at Sar-Cheshmeh, Gozan, and Kighal, Azarbaijan region (northwestern Iran)”. International Association, Genesis of ore deposits Fifth Symposium, Snowbird, Utah, Abstract, No. 88, (1978).
[7] Cooke et al. “Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls”, Economic Geology.(2005) 801-818.
[8] عطاپور، م. ح.، "بررسی ویژگیهای ژئوشیمیایی و پترولوژیکی توده های نفوذی گرانیتوئیدی ایران"، سازمان زمین شناسی و اکتشافات معدنی کشور، (1377) 81، 21.
[9] Lowell, J. D., and Guilbert, J. M., “ Lateral and vertical alteration-mineralization zoning in porphyry ore deposits”: Economic Geology, v. 65, (1970) 373-408.
[10] Kirkham, R. V., “Intermineral intrusions and their bearing on the origin of porphyry copper and molybdenum deposits”: Economic Geology, v. 66, (1971) 1244-1246.
[11] کریم پو، م. ح.، سعادت، س.، "زمین شناسی اقتصادی کاربری"، ویرایش جدید، نشر مشهد، (1381) 180- 195.
[12] Rothestein, Y., “Spectroscopy of Jarosite minarals”, mount Haloke college, PHD thesis, (2006).
[131] Rose, A. W., and Burt, D. M., “Hydrothermal alteration in Barnes, H. L., ed., Geochestry of hydrothermal ore deposite”, 3rd edition: New York, USA, Jone wiley and sons, (1979) 173- 235.
CAPTCHA Image