Determination of physicochemical conditions and role of fluids in evolution of Geysour granitoid (eastern Gonabad), using biotite mineral chemistry

Document Type : Research Article

Authors

1 Department of Geology, Faculty of Science, Lorestan University, Khorramabad, Iran

2 Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran

3 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

 

Introduction
The chemical composition of biotite in mineralization associated with granitoids and copper porphyry deposits is sensitive to several chemical and physical factors. It is also related tomagmatic and hydrothermal activities including water concentration, halogen and metal deposits, oxidation-sulfidation equilibrium, volatility (in melt-fluid-vapor equilibrium), elemental distribution relationships, and temperature and pressure of economic deposits (Webster, 1997, 2004).
 
Material and methods
Detailed field studies have been done, and several thin sections and polished thin sections were studied by conventional petrographic methods. Thirty points of biotite grains were selected and analyzed by a CAMECA SX Five electron probe micro-analyzer with 15 kV accelerator voltage and 20 nA beam current (5 μm beam size) at the Institute of Geology and Geophysics in the Chinese Academy of Sciences (IGG-CAS). The results were processed using MICA + software (Yavuz, 2003a, 2003b).
 
Results and Discussion
The Geysour granitoid pluton (Lower Cretaceous) consists of granodiorite, mafic microgranular enclaves, and micro-granite sill. The granodioriticrocks are mainly composed of plagioclase, quartz, K-feldspar and biotite along with accessory minerals of zircon, apatite and magnetite. Mafic microgranular enclaves are composed of quartz diorite, granodiorite and biotite granite, with fine-grained to porphyry texture and large eyes of quartz and plagioclase assemblages. The microgranite has porphyry texture with a fine-grained groundmass. Its phenocrysts are plagioclase, quartz and biotite along with accessory minerals of allanite, needle like apatite, epidote and calcite.
Biotite is the only ferromagnesian mineral in theGeysour granitoid which falls into the category of real trioctahedral mica. The biotites of granodiorite and enclave samples are in group I and group of ferrous biotites. The biotitesof microgranite samples are in group I and group of magnesium biotites (Tischendorf et al., 1997). In the 10*TiO2-(FeOtot+MnO)-MgO ternary diagram (Nachit et al., 2005) all the analyzed biotites fall into the field of reequilibrated primary biotite. The formation temperatures of biotites in granodiorite, enclave and microgranite are 653-732 oC, 631-724 oC and 689-732 oC, respectively (Luhar et al., 1984; Henry et al., 2005). The mean pressure values are about 4 Kbar ​​for granodiorite and enclave and 2 Kbar for microgranite (Uchida et al., 2007). Biotites of granodioriteand enclave biotites are located on top of the NNO buffer, which correspond to biotite compositions of magnetite series magmas, and biotites ofmicrogranite lie below the NNO buffer line and within the QFM buffer range. Biotite composition based discriminant diagrams cannot be used to determine the tectonic setting of the Geysour granitoids because they are low temperature I-type granites. The mean logarithmic ratios of fH2O to fHF and fHCl, and fHF to fHCl for the rocks studied are as follows: log(fH2O/fHF)fluid=4.56, log(fH2O/fHCl)fluid=4.47 and log(fHF/fHCl)fluid=-0.53. The first two values ​​are much larger than 1 indicating that the fluids are rich in water. Also, all biotites have high angles with linear trends of log(fHF/fHCl), log(fH2O/fHCl) and log(fH2O/fHF) indicating changes in fugacity conditions and halogen content of the fluid due to wall-rock reaction (Boomeri et al., 2009). Hydrothermal fluid fugacity ratio has been calculated for biotites of granodiorite, enclaves and microgranite samples at mean temperature of 661 oC, 654 oC and 703 o C, respectively, which indicate that hydrothermal fluids are of potassic type, because the log(fH2O/fHCl) is high, the log(fHF/fHCl) is slightly negative and the log(fH2O/fHF) is lower than that of phyllic alteration (Selby and Nesbitt, 2000). Meanwhile the magmatic fluid is significantly different from porphyry-type fluids (Baldwin and Pearce, 1982; Mason and Feiss, 1979; Selby and Nesbitt, 2000).
 
References
Baldwin, J.‌A. and Pearce, J.‌A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77‌(3): 664–674. http://dx.doi.org/10.2113/gsecongeo.77.3.664
Boomeri, M., Nakashima, K. and Lentz, D.‌R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103‌(1): 17–29. https://doi.org/10.1016/j.gexplo.2009.05.003
Henry, D.‌J., Guidotti, C.‌V. and Thomson, J.‌A., 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90‌(2–3): 316–328. https://doi.org/10.2138/am.2005.1498
Luhar, J.‌F., Carmichael, I.‌S.‌E. and Varekamp, J.‌C., 1984. The 1982 Eruptions of El Chichon volcano, Chiapas, Mexico: Mineralogy and Petrology of the anhydrite-bearing Pumices. Journal of volcanology and geothermal research, 23 (1–2): 69–108. https://doi.org/10.1016/0377-0273(84)90057-XMason, D.‌R. and Feiss, P.G., 1979. On the relationship between whole rock chemistry and porphyry copper mineralization. Economic Geology, 74(6): 1506–1510. https://doi.org/10.2113/gsecongeo.74.6.1506
Nachit, H., Ibhi, A., Abia, El.-H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337‌(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Selby, D. and Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino Porphyry Cu-Au-Mo mineralization, Yukon, Canada: Evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171‌(1–2): 77–93.  https://doi.org/10.1016/S0009-2541(00)00248-5
Tischendorf, G., Gottesmann, B.‌F. Orster, H.J. and Trumbull, R.B., 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation. Mineralogical Magazine, 61‌(409): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
Uchida, E., Endo, S. and Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1): 47–56. https://doi.org/10.1111/j.1751-3928.2006.00004.x
Webster, J.D., 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for oremetal transport. Geochimica et Cosmochimica Acta, 61‌(5): 1017–1029. https://doi.org/10.1016/S0016-7037(96)00395-X
Webster, J.D., 2004. The exsolution of magmatic hydrosaline chloride liquids. Chemical Geology, 210‌(1–4): 33–48. https://doi.org/10.1016/j.chemgeo.2004.06.003
Yavuz, F., 2003a. Evaluating micas in petrologic and metallogenic aspect: I—definitions and structure of the computer program Mica+. Computational Geosciences, 29‌(10): 1203–1213. https://doi.org/10.1016/S0098-3004(03)00142-0
Yavuz, F., 2003b. Evaluating micas in petrologic and metallogenic aspect: Part II—Applications using the computer program Mica+. Computational Geosciences, 29‌(10): 1215–1228. https://doi.org/10.1016/S0098-3004(03)00143-2

Keywords


Abdel-Rahman, A.M., 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35 (2): 525–541. https://doi.org/10.1093/petrology/37.5.1025
Abrecht, J. and Hewitt, D.A., 1988. Experimental evidence on the substitution of Ti in biotite. American Mineralogist, 73‌(11–12): 1275–1284. http://www.minsocam.org/ammin/AM73/AM73_1275.pdf
Arima, M. and Edgar, A.D., 1981. Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contributions to Mineralogy and Petrology, 77‌(3): 288–295. https://doi.org/10.1007/BF00373544
Baldwin, J.‌A. and Pearce, J.‌A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77‌(3): 664–674. http://dx.doi.org/10.2113/gsecongeo.77.3.664
Barriére, M. and Cotton, J., 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contribution to Mineralolgy and Petrology, 70‌(2): 183–192. https://doi.org/10.1007/BF00374447
Boomeri, M., Nakashima, K. and Lentz, D.‌R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103‌(1): 17–29. https://doi.org/10.1016/j.gexplo.2009.05.003
Boomeri, M., Biabangard, H. and Zeinadini, Z., 2019. Investigation of petrography, mineralogy and alteration of northern part of the Chahfiruzeh porphyry copper deposit, northwest of Shar-e-Babak, Kerman. Journal of Economic Geology, 11‌(1): 57-80. (in Persian with English abstract) https://doi.org/ 10.22067/ECONG.V11I1.63353
Bowman, J.R., Parry, W.T., Kropp, W.P. and Kruer, S.A., 1987. Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah. Economic Geology, 82‌(2): 395–428. https://doi.org/10.2113/gsecongeo.82.2.395
Candela, P.A., 1997. A review of shallow, ore related granites: textures, volatiles and ore metal. Journal of Petrology, 38‌(12): 1619–1633. https://doi.org/10.1093/petroj/38.12.1619
De Albuquerque, C.A.R., 1973. Geochemistry of biotites from granitic rocks, Northern Portugal. Geochimica et Cosmochimica Acta, 37‌(7): 1779–1802. https://doi.org/10.1016/0016-7037(73)90163-4
Didier, J. and Barbarin, B., 1991. The different types of enclaves in granites-nomenclature. In: J. Didier, B. Barbarin (Editors), Enclaves and granite petrology: Developments in Petrology. Elsevier, Amsterdam, pp. 19–24. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6546938
Dodge, F.C.W., Smith, V.‌C. and Mays, R.‌E., 1969. Biotites from granitic rocks of the central Sierra Nevada batholith, California. Journal of Petrology, 10‌(2): 250–271. https://doi.org/ 10.1093/petrology/10.2.250
Dorais, M.‌J., Lira, R., Chen, Y. and Tingey, D., 1997. Origin of biotite-apatite-rich enclaves, Achala batholith, Argentina. Contribution to Mineralolgy and Petrology, 130‌(1): 31–46. https://doi.org/10.1007/s004100050347
Dymek, R.F., 1983. Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, west Greenland. American Mineralogist, 68‌(9–10): 880–899. http://www.minsocam.org/ammin/AM68/AM68_880.pdf
Ekstrom, T.K., 1972. The distribution of fluorine among some coexisting minerals. Contribution to Mineralolgy and Petrology, 34‌(3): 192–200. https://doi.org/10.1007/BF00373291
Engel, A.‌‌E.‌J. and Engel, C.G., 1960. Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York, Part 2. Mineralogy. Bulletin of the Geological Society of America, 71‌(1): 1–58. https://resolver.caltech.edu/CaltechAUTHORS:20140806-162350610
Foley, A., 2004. Geological Map of 1: 250000 Gonabad. Geological Survey of Iran.
Forbes, W.C. and Flower, M.F.J. 1974. Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: A refractory phase in the upper mantle. Earth and Planetary Science Letters, 22‌(1): 60–66. . https://doi.org/10.1016/0012-821X(74)90064-8
Foster, M.D., 1960. Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Paper, Washington, 49 pp. https://pubs.usgs.gov/pp/0354b/report.pdf
Ghaemi, F., 2010. Geological Map 1: 100,000 Nodeh. Geological Survey of Iran. (in Persian)
Guidotti, C.V., Cheney, J.T. and Guggenheim, S., 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. American Mineralogist, 62‌(5–6): 438–448. http://www.minsocam.org/ammin/AM62/AM62_438.pdf
Guidotti, C.V., 1984. Micas in metamorphic rocks. In: S.W. Bailey )Editor(, Reviews in Mineralogy: Micas, Mineralogical society of America, USA, pp. 257‌–468.  https://pubs.geoscienceworld.org/msa/rimg/article/13/1/357/87166/Micas-in-metamorphic-rocks
Guidotti, C.V., Cheney, J.T. and Henry, D.J., 1988. Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine. American Journal of Science, 288-A: 270–292. https://doi.org/10.1007/BF00521645
Guidotti, C.V. and Sassi, F.P., 2002. Constraints on studies of metamorphic K-Na white micas. In: A. Mottana, F.P. Sassi, J.B. Thompson Jr. and S. Guggenheim (Editors), Micas: Crystal Chemistry and Metamorphic Petrology, Mineralogical society of America, USA, pp. 413–448. https://doi: 10.2138/rmg.2002.46.09
Gunow, A.J., Ludington, S. and Munoz, J.L., 1980. Fluorine in micas from the Henderson molybdenite deposits, Colorado. Economic Geology, 75‌(8): 1127–1137. https://doi:10.2113/gsecongeo.75.8.1127
Heidari, M., Zarasvandi, A., Rezaei, M., Raith, J. and Adel Saki, A., 2019. Physicochemical Attributes of Parental Magma in Collisional Porphyry Copper Systems; Using Biotite Chemistry, Case Study: Chahfiruzeh Porphyry Copper Deposit. Journal of Economic Geology, 10‌(2): 561–586. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i2.65652
Henry, D.J. and Guidotti, C.V., 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls and petrologic applications. American Mineralogist, 87‌(4): 375–382. https://www.academia.edu/3152454/Titanium_in_biotite_from_metapelitic_rocks
Henry, D.‌J., Guidotti, C.‌V. and Thomson, J.‌A., 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90‌(2–3): 316–328. https://doi.org/10.2138/am.2005.1498
Honma, H., 1974. Chemical features of biotites from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 69‌(11): 390–402. https://doi.org/10.2465/ganko1941.69.390
Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27‌(145): 293–305. https://biblioserver.sernageomin.cl/opac/DataFiles/14767.pdf
Kanisawa, S., 1972. Coexisting biotites and hornblendes from some granitic rocks in southern Kitakami Mountains, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 67‌(10): 332–344. https://doi.org/10.2465/ganko1941.67.332
 Kanisawa, S., 1974. Granitic rocks closely associated with the lower Cretaceous volcanic rocks in the Kitakami Mountains, Northeast Japan. The Journal of the Geological Society of Japan, 80‌(8): 355–367. https://www.semanticscholar.org/paper/Granitic-rocks-closely-associated-with-the-Lower-in-Kanisawa/f072a3ca796597f72b5aad5f3aeddc1a209cd377
Kwak, T.A.P., 1968. Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochimica et Cosmochimica Acta, 32‌(11): 1222–1229. https://doi.org/10.1016/0016-7037(68)90124-5
Labotka, T.C., 1983. Analysis of the compositional variations of biotite in pelitic hornfels from northeastern Minnesota. American Mineralogist, 68‌(9–10): 900–914. http://www.minsocam.org/ammin/AM68/AM68_900.pdf
Lalonde, A. and Bernard, P., 1993. Composition and color of biotite from granites: Two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, NW Territories. The Canadian Mineralogist, 31‌(1): 203–217. https://www.academia.edu/16992267/COMPOSITION_OF_BIOTITE_FROM_GRANITIC_ROCKS_OF_THE_CANADIAN_APPALACHIAN_OROGEN_A_POTENTIAL_TECTONOMAGMATIC_INDICATOR
Lanier, G., Raab, W.‌J., Folsom, R.B. and Cone, S., 1978. Alteration of equigranular monzonite, Bingham Mining District, Utah. Economic Geology, 73‌(7): 1270–1286. https://doi.org/10.2113/gsecongeo.73.7.1270
Lentz, D.R., 1994. Exchange reactions in hydrothermally altered rocks: examples from biotite-bearing assemblages. In: D.R. Lentz (Editor), Alteration and alteration processes associated with ore-forming systems. Geological Association of Canada, Canada, pp. 69–99. https://doi.org/10.1007/3-540-27946-6_128
Luhar, J.‌F., Carmichael, I.‌S.‌E. and Varekamp, J.‌C., 1984. The 1982 Eruptions of El Chichon volcano, Chiapas, Mexico: Mineralogy and Petrology of the anhydrite-bearing Pumices. Journal of volcanology and geothermal research, 23 (1–2): 69–108. https://doi.org/10.1016/0377-0273(84)90057-X
Mason, D.‌R. and Feiss, P.G., 1979. On the relationship between whole rock chemistry and porphyry copper mineralization. Economic Geology, 74(6): 1506–1510. https://doi.org/10.2113/gsecongeo.74.6.1506
Munoz, J.L. and Ludington, S.D., 1977. Fluoride-hydroxyl exchange in synthetic muscovite and its application to muscovite–biotite assemblages. American Mineralogist, 62 (3-4): 304–308. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.565.6291
Munoz, J.L., 1984. F–OH and Cl–OH exchange in mica with application to hydrothermal ore deposits. In: S. W. Bailey (Editor), Micas: Reviews in mineralogy, Mineralogical society of America, USA, pp. 469–494. https://pubs.geoscienceworld.org/msa/rimg/article/13/1/469/87167/F-OH-and-Cl-OH-exchange-in-micas-with-applications
Munoz, J.‌L., 1992. Calculation of HF and HCl
 
     fugacities from biotite compositions: revised equations. Geological Society of America, 24‌(A): 221–222. https://faculty.uml.edu/Nelson_Eby/Research/F&Cl/FCl.htm
Munoz, J.L. and Swenson, A., 1981. Chloride–hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Economic Geology, 76‌(8): 2212–2221. https://doi.org/10.2113/gsecongeo.76.8.2212
Nabavi, M.‌H., 1976. An introduction to the geology of Iran. Geological Survey of Iran, Tehran. 110 pp. (in Persian)
Nachit, H., Ibhi, A., Abia, El.-H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience, 337‌(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Neiva, A.M.R., 1981. Geochemistry of hybrid granitoid rocks and of their biotites from Central Northern Portugal and their petrogenesis. Lithos, 14‌(2): 149–163. https://doi.org/10.1016/0024-4937(81)90051-7
Panigrahi, M.K., Naik, R.K., Pandit, D. and Misra, K.C., 2008. Reconstructing physicochemical parameters of hydrothermal mineralization of copper at the Malanjkhand deposit, India, from mineral chemistry of biotite, chlorite and epidote. Geochemical Journal, 42‌‌(5): 443–460. https://doi.org/10.2343/geochemj.42.44
Parry, W.T., Ballantyne, G.H. and Wilson, J.C., 1978. Chemistry of biotite and apatite from a vesicular quartz latite porphyry plug at Bingham, Utah. Economic Geology, 73‌(7): 1308–1314. https://doi.org/10.2113/gsecongeo.73.7.1308
Patiño Douce, A.E., 1993. Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences form biotite stability. Chemical Geology, 108‌(1–4): 133–162. https://doi.org/10.1016/0009-2541(93)90321-9
Plimer, I.R. and Kleeman, J.D., 1986. Major- and minor-element chemistry of biotites in Mole Granite, New South Wales, Australia. Transactions of the Institution of Mining and Metallurgy, Section B – Applied Earth Science, 95‌(1): B1–B5. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8818616
Pourmohammad, A.‌S., Ahmadi Khalaji, A., Homam, M., Tahmasebi, Z. and Ebrahimi, M., 2020. Geochemistry, petrogenesis and tectonic setting of Geysour granitoid, East Gonabad. Scientific Quarterly journal, Geosciences, Geological Survey of Iran, 29(115): 137–150. (in Persian with English abstract)  http://dx.doi.org/10.22071/gsj.2019.148243.1533
Ramberg, H., 1952. Chemical bonds and distribution of cations in silicates. The Journal of Geology, 60‌(4): 331–355. https://doi.org/10.1056/625982
Rieder, M., Cavazzini, G., Yakonov, Y.D., Frank-Kanetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas. The Canadian Mineralogist, 36‌(3): 905–912. https://doi.org/10.1346/CCMN.1998.0460513
Rimsaite, J., 1970. Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group. Contribotion to Mineralogy and Petrology, 25‌(3): 225‌–240. https://doi.org/10.1007/BF00371132
Robert, J.L., 1976. Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17‌(1): 213–227. https://doi.org/10.1016/0009-2541(76)90036-X
Selby, D. and Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino Porphyry Cu-Au-Mo mineralization, Yukon, Canada: Evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171‌(1–2): 77–93.  https://doi.org/10.1016/S0009-2541(00)00248-5
Shabani, A.‌A.‌T. and Lalonde, A.E., 2003. Composition of Biotite from Granitic rocks of the Canadian Appalachian Orogen: a potential tectonomagmatic indicator. The Canadian Mineralogist, 41‌(6): 1381–1396. http://dx.doi.org/10.2113/gscanmin.41.6.1381
Stevens, R.E., 1946. A system for calculating analyses of micas and related minerals to end members.Bulletinof theUnited States Geological Survey, 950‌(1): 101–119. https://link.springer.com/article/10.1346/CCMN.1998.0460513
Taylor, R.P., 1983. Comparison of biotite geochemistry of Bakircay, Turkey, and Los Pelambres, Chile, porphyry copper systems. Transactions of the Institution of Mining and Metallurgy sections, B, 92‌(Feb): B16–B22. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902095605387864
Tronnes, R.G., Edgar, A.D. and Arima, M., 1985. A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry. Geochimica et Cosmochimica Acta, 49‌(11): 2323–2329. https://doi.org/10.1016/0016-7037(85)90232-7
Tischendorf, G., Gottesmann, B.‌F. Orster, H.J. and Trumbull, R.B., 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation. Mineralogical Magazine, 61‌(409): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
Uchida, E., Endo, S. and Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1): 47–56. https://doi.org/10.1111/j.1751-3928.2006.00004.x
Webster, J.D., 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for oremetal transport. Geochimica et Cosmochimica Acta, 61‌(5): 1017–1029. https://doi.org/10.1016/S0016-7037(96)00395-X
Webster, J.D., 2004. The exsolution of magmatic hydrosaline chloride liquids. Chemical Geology, 210‌(1–4): 33–48. https://doi.org/10.1016/j.chemgeo.2004.06.003
White, A.J.R. and Chappell, B.W., 2004. Petrographic discrimination of low- and high temperature I-type granites. Resource Geology, 54‌(3): 215–226. https://doi.org/10.1111/j.1751-3928.2004.tb00203.x
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming mineral. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wones, D.R. and Eugster, H.P., 1965. Stability of biotite: experiment, theory and application. American Mineralogist, 50‌(1): 1228–1272. http://www.minsocam.org/ammin/AM50/AM50_1228.pdf
Yavuz, F., 2003a. Evaluating micas in petrologic and metallogenic aspect: I—definitions and structure of the computer program Mica+. Computational Geosciences, 29‌(10): 1203–1213. https://doi.org/10.1016/S0098-3004(03)00142-0
Yavuz, F., 2003b. Evaluating micas in petrologic and metallogenic aspect: Part II—Applications using the computer program Mica+. Computational Geosciences, 29‌(10): 1215–1228. https://doi.org/10.1016/S0098-3004(03)00143-2
Zhang, W., Lentz, D.R., Thorne, K.G. and McFarlane, C., 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W–Mo–Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77(77): 82–96.https://doi.org/10.1016/j.oregeorev.2016.02.004
Zhu, C. and Sverjensky, D.A., 1992. Partitioning of F–Cl–OH between biotite and apatite Geochimica et Cosmochimica Acta, 56‌(9): 3435–3467. https://doi.org/10.1016/0016-7037(92)90390-5
CAPTCHA Image