Genesis of Eocene volcanic-hosted copper deposits in the Kuh-e-Jarou Mining District (South Eshtehard): Constraints from geology, mineralization and fluid inclusions

Document Type : Research Article

Authors

1 Assistant Professor, Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran

2 M.Sc., Faculty of Geoscience, Isfahan University, Isfahan, Iran

3 Ph.D. Student, Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran

Abstract

Introduction
The Saveh-Kashan-Qom copper belt, in the northern part of the Urumieh-Dokhtar Magmatic Arc (UDMA) consists of two of the oldest (gold and copper) zones in Iran (Samani, 1998; Rajabpour et al., 2017) where Upper Eocene-Oligocene Mard Abad-Bouin Zahra volcanic suite is situated. This volcanic suite hosts several copper deposits including Jarou, Gomosh Dasht, Ghezel Cheshme, Bidestan and Afshar Abad that are known as the "Kuh-e-Jarou Mining District". The Kuh-e-Jarou Mining District has a total potential ore reserve of 2 Mt Cu with an average grade of 3 wt.% (Zar-Azin Gostar Consultant Engineering Co., 2009). Upper Eocene volcanic and pyroclastic rocks of rhyodacite, trachyandesite, andesite, and trachytic tuff with high-K calc-alkaline to shoshonitic affinity consist of the main host rocks for Cu mineralization. These units are primarily intruded by post Eocene intrusive bodies.  The geochemistry and genesis of ore bodies have not been fully understood since most previous studies in this area have been focused on petrology of volcanic and intrusive rocks. Moreover, the main purpose of this study is to investigate mineralization style, geometry, and textural-structural features of orebodies, alterations, and fluid inclusions with implication for genesis of Jarou, Gomosh Dasht, Ghezel Cheshme, Bidestan and Afshar Abad copper deposits. In addition, this research provides more insight into understanding geology and mineralization conditions in the study area with an implication for future exploration.
Materials and methods
Seventeen thin polished sections from the ores and the host rocks were prepared and they were studied by a transmitted/reflected polarizing microscope in the Iran Mineral Processing Research Center (Karaj, Iran). Five rock powdered samples were also analyzed using X-ray diffraction (XRD) spectrometry (X′ pert Philips) in order to identify the mineralogy of clay minerals in the mineralogy laboratory of Salamanca University (Spain). Fluid inclusion microthermometry was performed using a Linkam THMS600 heating-freezing stage (-190 to +600 °C) mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran). Salinities (wt.% NaCl eq.), density (g/cm3) and pressure (bars) were calculated using the FLINCOR v.1.4 (Brown, 1989) and FLUIDS (Bakker, 2012).
 
Results and discussion
The orebody is controlled by a series of feather-like ruptures and faults and its dominant mineral compositions are chalcopyrite and chalcocite with minor amounts of pyrite, galena, bornite and sphalerite. The gangue minerals are quartz, barite, calcite and chlorite. Four types of hydrothermal alterations including chloritization, sulfidization, silicification and epidotization were recognized. Based on field and petrographic studies, three mineralization stages were distinguished including (1) the pre-ore mineralization stage characterized by fine-grained disseminated pyrites, (2) the main hydrothermal stage consisting of three substages: I) an early quartz-chalcopyrite ± bornite vein, II) middle bornite-chalcocite ± covellite breccia ore, III) late galena and sphalerite inclusions, and (3) late-stage barite and calcite veins.
Based on petrographic studies, five types of aqueous fluid inclusions have been distinguished in the quartz-chalcopyrite ± bornite and barite veins including two-phase liquid-rich (LV), two-phase vapor-rich (VL), liquid monophase (L), vapor monophase (V) and minor halite-bearing liquid-rich fluid inclusions (LVS). The results show that parental fluids with a density of >1 g/cm3 and an approximate depth of 400 meters were formed and they were followed by fluid inclusions with a density of <1 g/cm3 and a depth of <300 meters due to fluid depressurization, faults. Moreover, introducing low temperature meteoric waters have caused fluid mixing and subsequently copper ore deposition (Henley et al., 2015; Cheng et al., 2019). Considering all geological mineralization styles, textures and structures of the orebody, types of alteration and fluid inclusions in copper deposits of the Kuh-e-Jarou Mining District, it can be suggested that these deposits have similarities with the Manto-type copper deposits in Chile or volcanic red beds in northern America.

Keywords


Aghazadeh, M., Badrzadeh, Z., Hou, Z. and Zhou, L.M., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70(4): 385–406. https://doi.org/10.1016/j.oregeorev.2015.03.003
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(2): 211–38. https://doi.org/10.1016/0040-1951(94)90030-2
Aliyari, F., Afzal, P., Harati, H. and Zengqian, H., 2019. Geology, mineralogy, ore fluid characteristics, and 40Ar/39Ar geochronology of the Kahang Cu-(Mo) porphyry deposit, Urumieh Dokhtar Magmatic Arc, Central Iran. Ore Geology Reviews, 116: 103238. https://doi.org/10.1016/j.oregeorev.2019.103238
Alizadeh, V., Momenzadeh, M. and Emami, M.H., 2013. Petrography, geochemistry, mineralogy, fluid inclusions and mineralization study of Vorezg-Qayen copper deposit. Scientific Quarterly Journal, Geosciences, 22(86): 47–58 (in Persian with English abstract). https://doi.org/10.22071/GSJ.2012.54056
Al Hakim, A.Y., Melcher, F., Prochaska, W., Bakker, R. and Rantitsch, G., 2018. Formation of epizonal gold mineralization within the Latimojong Metamorphic Complex, Sulawesi, Indonesia: Evidence from mineralogy, fluid inclusions and Raman spectroscopy. Ore Geology Reviews, 97(2): 88–108. https://doi.org/10.1016/j.oregeorev.2018.05.001
Asadi, S., Moore, F. and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Science Reviews, 138(5): 25–46. https://doi.org/10.1016/j.earscirev.2014.08.001
Asgharzadehasl, H., Mehrabi, B. and Tale Fazel, E., 2017. Mineralogy, occurrence of mineralization and temperature-pressure conditions of the Agh-Daragh polymetallic deposit in the Ahar-Arasbaran metallogenic area. Journal of Economic Geology, 9(1): 1–23 (in Persian with English abstract). https://doi.org/10.22067/econg.v9i1.44244
Bakker, R., 2012. Package FLUIDS. Part 4: Thermodynamic modeling and purely empirical equations for H2O-NaCl-KCl solutions. Mineralogy and Petrology, 105(6): 1–29. https://doi.org/10.1007/s00710-012-0192-z
Bazin, D. and Hubner, H., 1969. Copper deposits in Iran. Geological survey of Iran, Tehran, Report 13, 232 pp.
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of Geological Society of London, 139(2): 605–14. https://doi.org/10.1144/gsjgs.139.5.0605
Bodnar, R.J., Sterner, S.M. and Hall, D.L., 1989. SALTY: a FORTRAN program to calculate compositions of fluid inclusions in the system NaCl–KCl–H2O. Computer & Geoscience, 15(1): 19–41. https://doi.org/10.1016/0098-3004(89)90053-8
Boiron, M.C., Cathelineau, M. and Richard, A., 2010. Fluid flows and metal deposition near basement/cover unconformity: Lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids, 10(6): 270–292. https://doi.org/10.1111/j.1468-8123.2010.00289.x  
Boric, R., Holmgren, C., Wilson, N.S.F. and Zentilli, M., 2002. The Geology of the El Soldado Manto Type Cu (Ag) Deposit, Central Chile. In: T.M. Porter (Editors), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Porter GeoConsultancy, Adelaide, pp. 163–184.
Brown, A.C., 1971. Zoning in the White Pine copper deposit, Ontonagon County, Michigan. Economic Geology, 66(4): 543–573. https://doi.org/10.1016/0009-2541(89)90022-3
Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11–12): 1390–1393. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/74/11-12/1390/42220/FLINCOR-a-microcomputer-program-for-the-reduction?redirectedFrom=fulltext
Boveiri, M., Rstad, E., Kojima, S. and Rashidnejad, N., 2013. Volcanic redbed-type copper mineralization in the Lower Cretaceous volcano-sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch für Mineralogie-Abhandlungen, 27(5): 107–121. https://doi.org/10.1127/0077-7757/2013/0236
Cabral, A.R. and Beaudoin, G., 2007. Volcanic red-bed copper mineralization related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Mineralium Deposita, 42(3): 901–912. https://doi.org/10.1007/s00126-007-0141-7
Cai, Y.T., Ni, P., Wang, G.G., Pana, J.Y., Zhu, Z.T., Chena, H. and Ding, J-Y., 2016. Fluid inclusion and H–O–S–Pb isotopic evidence for the Dongxiang Manto-type copper deposit, South China. Journal of Geochemical Exploration 171(2): 71–82. https://doi.org/10.1016/j.gexplo.2016.01.019
Cheng, X., Yang, F., Zhang, R. and Yang, C., 2019. Hydrothermal evolution and ore genesis of the Hongshi copper deposit in the East Tianshan Orogenic Belt, Xinjiang, NW China: Constraints from ore geology, fluid inclusion geochemistry and H-O-S-He-Ar isotopes. Ore Geology Reviews, 109(5): 79–100. https://doi.org/10.1016/j.oregeorev.2019.03.035
Chi, G. and Xue, Ch., 2011. An overview of hydrodynamic studies of mineralization. Geosciences Frontiers, 2(3): 423–438. https://doi.org/10.1016/j.gsf.2011.05.001
Corbett, G. and Leach, T.M., 1998. Southwest Pacific Rim gold-copper systems: Structure, alteration, and mineralization. Society of Economic Geologists, United State of American, 237 pp.
Cox, K.G., Bell, J.D. and Pankhurts, R.J., 1979. The interpretation of igneous rocks. Springer, London, 450 pp.
Driesner, T. and Heinrich, C.A., 2007. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(5): 4880–4901. https://doi.org/10.1016/j.gca.2006.01.033
Hall, D.L., Sterner, S.M. and Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(3): 197–202. https://doi.org/10.2113/GSECONGEO.83.1.197
Heinrich, C.A. and Candela. P.A., 2014. Fluids and Ore Formation in the Earth’s Crust. Treatise on Geochemistry, 2(1): 1–28. https://doi.org/10.1016/B978-0-08-095975-7.01101-3
Henley, R.W., King, P.L., Wykes, J.L., Renggli, C.J., Brink, F.J., Clark, D.A. and Troitzsch, U., 2015. Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption. Nature Geoscience, 8(3): 210–215. https://doi.org/10.1038/ngeo2367
Hosseini, M., 1996. Economic geology of the southeast Eshtehard. M.Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 478 pp.
Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A.M. and Mehrabi, B., 2009. Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52(7): 608–630. https://doi.org/10.1080/00206810903416323
Javidi Moghaddam, M., Hassan Karimpour, M., Malekzadeh Shafaroudi, A., Francisco Santos, J. and Helena Mendes, M., 2019. Geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of intrusive rocks: Constraint on the genesis of the Cheshmeh Khuri Cu mineralization and its link with granitoids in the Lut Block, Eastern Iran. Journal of Geochemical Exploration, 202(3): 59–76. https://doi.org/10.1016/j.gexplo.2019.04.001
Kansaran Consultant Engineering Co., 1994. Geology and mineral deposits of the southeast Eshtehard (Jarou). Ministry of industrial and mines, 300 pp.
Khoei, N., Ghorbani, M. and Tajbakhsh, P., 1999. Copper deposits in Iran. Geological Survey of Iran, Tehran, 421 pp.
Kirkham, R.V., 1984. Volcanic red bed copper. Geological Survey of Canada, Canada, Report 36, 37 pp.
Kirkham, R.V., 1996. Volcanic redbed copper. In: O.R. Eckstrand, W.D. Sinclair and R.I. Thorpe (Editors), Geology of Canadian mineral deposit types. Geological Survey of Canada, Canada, pp. 241–252.
Klohn, E., Holmgren, C., Ruge, H., 1990. El Soldado, a strata-bound copper deposit associated with alkaline volcanism in the Central Chilean Coastal Range. In: L. Fontboté, G.C. Amstutz, M. Cardozo, E. Cedillo and J. Frutos (Editors), Strata-bound ore deposits in the Andes. Springer, Berlin, pp. 435–448.
Kojima, S., Trista-Aguilera, D. and Hayashi, K., 2008. Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposits. Resource Geology, 59(3): 87–98. https://doi.org/10.1111/j.1751-3928.2008.00081.x
Kouhestani, H., Mokhtari, M.A.A., Chang, Z. and Johnson, C.A., 2018. Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 93(5): 1–18. https://doi.org/10.1016/j.oregeorev.2017.12.012
Kouhestani, H., Mokhtari, M.A.A., Qin, K.Z. and Zhao, J.X., 2019. Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom-Hashtjin metallogenic belt, NW Iran. Ore Geology Reviews, 109(3): 564–584. https://doi.org/10.1016/j.oregeorev.2019.05.014
Larson, P.B., Maher, K., Ramos, F.C., Chang, Z., Gaspar, M. and Meinert, L.D., 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201(3): 337– 350. https://doi.org/10.1016/j.chemgeo.2003.08.006
Lefebure, D.V. and Church, B.N., 1996. Volcanic Redbed Cu, in Selected British Columbia Mineral Deposit Profiles. In: D.V. Lefebure, and T. Hõy (Editors), Metallic Deposits. Ministry of Employment and Investment, British Columbia, pp. 5–7.
Liebscher, A. and Heinrich, C.A., 2007. Fluid-fluid interactions in the Earth's Lithosphere. Reviews in Mineralogy and Geochemistry, 65(1): 1–13. https://doi.org/10.2138/rmg.2007.65.1
Mahdizade Tehrani, S., 1995. Geological map of Karaj, Scale 1:100,000. Geological Survey of Iran.
Mahvashi, M. and Malekzadeh Shafaroudi, A., 2016. Cheshme Gaz (Nasim) copper deposit (NW Bardeskan): Mineralogy, alteration, geochemistry and model. Iranian Journal of Crystallography and Mineralogy, 23(3): 419–434.
Malekzadeh Shafaroudi, A. and Karimpour, M.H., 2015. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (copper) deposit, Eastern Iran. Journal of African Earth Sciences, 107(1): 1–14. https://doi.org/10.1016/j.jafrearsci.2015.03.015
Maghfouri, S., Hosseinzadeh, M.R., Moayyed, M., Movahednia, M. and Choulet, F., 2016. Geology, mineralization and sulfur isotopes geochemistry of the Mari Cu (Ag) Manto-type deposit, northern Zanjan, Iran. Ore Geology Reviews, 81(5): 10–22. https://doi.org/10.1016/j.oregeorev.2016.10.025
Mehrabi, B., Ghasemi Siani, M., Goldfarb, R., Azizi, H., Ganerod, M. and Marsh, E.E., 2016. Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran. Ore Geology Reviews, 78(4): 41–57. https://doi.org/10.1016/j.oregeorev.2016.03.016
Mehrabi, B., Chaghaneh, N. and Tale Fazel., 2014. The intermediate-sulfidation epithermal of the IV prospect of Golojeh deposit (N. Zanjan): Mineralography, alteration and ore-forming fluid geochemistry evidences. Journal of Economic Geology, 6(1): 1–22. (in Persian with English abstract) https://doi.org/10.22067/econg.v6i1.38302
Mohammadiasl, Z., Saidi A., Arian, M., Solgi A. and Farhadinejad, T., 2019. Veshnoveh Cu mine located in Kahak South-east geodynamic place (South of Qom). Scientific Quarterly Journal, Geosciences, 29(114): 175–184. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2018.95329.1226
Nogole-Sadat, M.A.A. and Hushmandzadeh, A., 1984. Geological map of Saveh, Scale 1:250,000. Geological Survey of Iran.
Oliveros, V., Féraud, G., Aguirre, L., Ramírez, L., Fornari, M., Palacios, C. and Parada, M., 2008. Detailed 40Ar/39Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile. Mineralium Deposita, 43(2): 281–293. http://dx.doi.org/10.1007/s00126-007-0146-2
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106(3): 380–398. https://doi.org/10.1016/j.lithos.2008.09.008
Pollard, P.J., 2006. An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Mineralium Deposita, 41(2): 179–187. https://doi.org/10.1007/s00126-006-0054-x
Rabiee, A., Rossetti, F., Tecce, F., Asahara, Y., Azizi, H., Glodny, J., Lucci, F., Nozaem, R., Opitz, J. and Selby, D., 2019. Multiphase magma intrusion, ore-enhancement and hydrothermal carbonatisation in the Siah-Kamar porphyry Mo deposit, Urumieh-Dokhtar magmatic zone, NW Iran. Ore Geology Reviews, 110(3): 102930. https://doi.org/10.1016/j.oregeorev.2019.05.016
Rahgozar, Sh., 1999. Genesis of the Gomosh Dash polymetallic mine at Kuh-e Jarou area. M.Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 238 pp.
Rajabpour, S., Behzadi, M., Jiang, S-Y., Rasa, I., Lehmann, B. and Ma, Y., 2017. Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Saveh county, northwestern Central Iran. Ore Geology Reviews, 86(7): 563–583. https://doi.org/10.1016/j.oregeorev.2017.03.001
Ramirez, L.E., Palacios, C., Townley, B., Parada, M.A., Sial, A.N., Fernandez- Turiel, J.L., Gimeno, D., Garcia-Valles, M. and Lehmann, B., 2006. The Mantos Blancos copper deposit: An upper Jurassic breccia-style hydrothermal system in the coastal range of northern Chile. Mineralium Deposita, 41(3): 246–258. https://doi.org/10.1007/s00126-006-0055-9
Rezaeihamid, R., Tale Fazel, E. and Niroomand, Sh., 2019. Minralization and genesis of the Baharieh Cu deposit (NE Kashmar) based on mineralography, geochemistry and fluid inclusion evidences. Scientific Quarterly Journal, Geosciences, 28(112): 43–58. (in Persian with English abstract) https://doi.org/10.22071/GSJ.2018.104610.1306
Rosúa, J., Boyce, A., Morales-Ruano, S., Morata, D., Roberts, S., Munizaga, F. and Rodríguez, V., 2014. Extremely negative and inhomogeneous sulfur isotope signatures in Cretaceous Chilean manto-type Cu–(Ag) deposits, Coastal Range of central Chile. Ore Geology Reviews, 56(4): 13–24. https://doi.org/10.1016/j.oregeorev.2013.06.013
Rosemeyer, T., 2011. News from the Keweenaw, Recent Mineral Finds in Michigan’s Copper Country. Rocks and Minerals, 73(3): 182-195. https://doi.org/10.1080/00357529809603034
Ruiz, C., Aguilar, A., Egert, E., Espinoza, W., Peebles, F., Quezada, R. and Serrano, M., 1971. Strata-bound copper sulphide deposits of Chile. Society of Mining Geology of Japan, 39(2): 252–260. https://doi.org/10.1007/978-3-642-88282-1
Salehi, L., Rasa, I., Alirezaei, S. and Kazemi Mehrnia, A. 2016. The Madan Bozorg, volcanic-hosted copper deposit, East Shahroud; a example of Manto type copper deposits in Iran. Scientific Quarterly Journal, Geosiences, 25(98): 93–104. (in Persian with English abstract) https://doi.org/10.22071/GSJ.2016.41166
Samani, B., 2001. Metallogeny of Manto-type Deposits in Iran. 6th Symposium of Iranian Geosciences, Shahid Bahonar University of Kerman, Kerman, Iran.
Samani, B., 1998. Distribution, setting and metallogenesis of copper deposits in Iran. In: T.M. Porter (Editor), Porphyry and Hydrothermal Copper & Gold Deposits: A Global Perspective. PGC Publishing, Adelaide, pp. 151–174.
Sato, T., 1984. Manto type copper deposits in Chile: A review. Bulltein of Geological Survey of Japan, 35(3): 565–582. https://doi.org/10.1111/j.1751-3928.2008.00081.x
Şengör, A.M.C., 1987. Tectonics of the Tethysides: orogenic collage development in a collisional setting. Earth and Planetary Science Letters, 15(3): 213–244. https://doi.org/10.1146/annurev.ea.15.050187.001241
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(5): 265–283. https://doi.org/10.1007/s00126-008-0216-0
Shepherd, T.J., Rankin, A.H. and Alderton, D.H., 1985. A practical guide to fluid inclusion studies. Glasgow Blackie and Sons, Glasgow, 239 pp.
Tale Fazel, E., Mehrabi, B. and Shabani, Tabbakh, A.A., 2015. Kuh-e Dom Fe–Cu–Au prospect, Anarak Metallogenic Complex, Central Iran: a geological, mineralogical and fluid inclusion study. Mineralogy and Petrology, 109(5): 115–141.  https://doi.org/10.1007/s00710-014-0354-2
Tale Fazel, E., Mehrabi, B. and Ghasemi Siani, M., 2019. Epithermal systems of the Torud-Chah Shirin district, northern Iran: Ore fluid evolution and geodynamic setting. Ore Geology Reviews, 109(3): 253–275. https://doi.org/10.1016/j.oregeorev.2019.04.014
Technoexport, 1981. Detail geology prospecting in the Anarak Area Central Iran. Geological Survey of Iran, Tehran, Report 9, 120 pp.
Tooti, F., 1991. Petrology of volcanic rocks of the Kuh-e Jarou area (southeast Eshtehard). M.Sc. Thesis, University of Tehran, Tehran, Iran, 131 pp.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(3): 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(3): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Wilson, N.S.F., 2000. Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile. International Journal of Coal Geology, 43(3): 53–82. https://doi.org/10.1016/S0166-5162(99)00054-3
Wilson, N.S.F. and Zentilli, M., 2006. Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. International Journal of Coal Geology, 65(4): 158–169. https://doi.org/10.1016/j.coal.2005.04.012
Wilson, N.S.F., Zentilli, M. and Spiro, B., 2003. A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado Manto-Type copper deposit, Chile: the essential role of bacteria and petroleum. Economic Geology, 98(1): 163–174. https://doi.org/10.2113/gsecongeo.98.1.163
Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D.R., Azimzadeh, A.M. and Pourkaseb, H., 2015. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran. Journal of Asian Earth Sciences, 111(2): 175-191.  https://doi.org/10.1016/j.jseaes.2015.07.029
Zar-Azin Gostar Consultant Engineering Co., 2009. General exploration report of the copper deposits at Jarou-Eshtehard area. Iranian Mines and Mineral Industries Development and Renovation Organization, Tehran, Report 1, 222 pp.
Zhang, Y.-G. and Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64(4): 335–350. https://doi.org/10.1016/0009-2541(87)90012-X
Zhong, R., Li, W., Chen, Y., Yue, D. and Yang, Y., 2013. P-T-X conditions, origin, and evolution of Cu-bearing fluids of the shear zone-hosted Huogeqi Cu–(Pb–Zn–Fe) deposit, northern China. Ore Geology Reviews, 50(2): 83–97. https://doi.org/10.1016/j.oregeorev.2012.10.003
     
 
CAPTCHA Image